Report General Dynamics Report

AD-A248 326
IEBRREMEI

06d-ONR-01

CORE AVIONICS AND STANDARDIZATION STUDY

David L. Kellogg, J. Kirston Henderson, Mikel J. Harris, Anthony J. Schiavone

GENERAL DYNAMICS D T ! C

Fort Worth Division . " ELECTE
P.O. Box 748, Fort Worth, TX 76101 . @ APROG 1992

31 March 1992
Final Technical Report (CDRL Item A002) for
Contract N00014-91-C-0233

Approved for public release; distribution unlimited

Prepared For
Office of Naval Research

800 North Quincy Street
Arlington, VA 22217-5000

92-08324
90 4 06 124 R

- SECURITY CLASSIFICATION OF THIS PAGE

_ L
REPORT DOCUMENTATION PAGE
= 812, REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
3 Unclassified
23. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
3 Unlimited
3 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
4 PERFORMING ORGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REFORT NUMBERIS)
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
tIf applicadle)
=] General Dynamics Corporation Office of Naval Research
7 6¢c. ADDRESS (City. State and ZIP Code)) 7b. ADDRESS (City, State and ZIP Code;
Fort Worth Division (P.0.B.748) 800 North Quincy Street
; Fort Worth, TX 76101 Arlington, VA 22217-5000
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMB80L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicable; 100014 91-C 0233
; NAV SPAWAR N -91-C-
8c. ADDRESS (City. State and ZIP Code) (SPAWAR) 10. SOURCE OF FUNDING NOS.

B Space and Naval Warfare Systems Command PROGRAM PROJECT TASK WORK UNiT
; Washington, D.C. 20363-5109 ELEMENT NO. NO. NO NO.
o LS 74N

11. TITLE tInciude Security Classification) 06045 74N
Core Avionics and Standardization

12. PERSONAL AUTHORI(S)
Rellogg, David L.; Henderson, J. Kirston; Harris, Mike J.; Schiavone, Athony J.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT
Final rRom 91/09/23 0 92/03/3]L 92/03/31 i
16. SUPPLEMENTARY NOTATION
Prepared in cooperation with Computer Sciences Corp., IBM, and HUGHES. I
Approved for public release; distribution unlimited
17 COSATI CODES 18 SUBJECT TYERMS (Continue on reverse if necessary and identify by block number)]
FIELD GROUP SUB. GR. Avionics, Standardization
01 03 03
14 02
19. ABSTRACT (Conlinue on reverse if necessary cnd identify by bluck number)
The standardization of avionics is based on modularity and commonality across an
instruction set architecture. When budgetary cutbacks are considered, the ability
to use standardization to cut costs assumes greater importance. Methodology to
examine benefits of standardization is presented. Objectives associated with L
standards adopted by the Joint Integrated Avionics Working Group (JIAWG) and the Next

Generation Computer Resources (NGCR) program are examined. Comparisons are made.
Conclusions are reached. Recommendations are made.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

; uncrassiFieo/unumTeEo B same as reT. 5 oTic users O Unclassified

f 222. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22¢. OF FICE SYMBOL
-]ames el Smith tInclude Area Codes
3 ‘ . (703) 696-4715 ONR Code 1211
BOD FORM 1473, 83 APR EDITION OF 1 JAN 7315 OBSOLETE.

ii SECURITY CLASSIFICATION OF THIS PAGE

PREFACE
CORE AVIONICS AND STANDARDIZATION

As early as 1985, General Dynamics Fort Worth Division was examining Distributing Operating
Systems in the context of avionics architectures. By 1988, a pre-release version of the Alpha
Distributed Operating System developed under Air Force contract at Carnegie-Mellon University
had been examined as an Operating System kemel for an avionics architecture. The following
analysis builds on the methodology developed during that examination.

The capability of General Dynamics Fort Worth Division to examine Real-Time Operating Systems
kernels was discussed with SPAWAR-231 in October, 1990. By that December, a Next
Generation Computer Resources program study was being considered for the real-time
reconciliation of tactical databases across multiple platforms. In preparation for such a study,
General Dynamics Fort Worth Division coordinated its efforts with NOSC-413 which was drafting
a white paper on the Database Management System Interface Standard for the Next Generation
Computer Resources program.

By September, 1991, the General Dynamics Fort Worth Division had initiated its own six-month
study of the real-time reconciliation of tactical databases across multiple platforms for the Office of
Naval Research. Such an effort was to be closely coordinated with NOSC-413. However, the
initiation of the NOSC-413 Database Management System Interface Standard Working Group for
the Next Generation Computer Resources program was delayed. In a subsequent strategy session
at SPAWAR-231, a decision was made for General Dynamics Fort Worth Division to address
possible reconciliation of the POSIX Operating System and Futurebus+ Backplane standards with
Core Avionics and the Joint Integrated Avionics Working Group PI-Bus Backplane standards.
Accepting this challenge, the General Dynamics Fort Worth Division enlisted the help of NAVAIR-
546B to interpret current status of the Navy Joint Integrated Avionics Working Group efforts and
solicited additional input from the Computer Sciences Corporation Integrated Systems Division,
the HUGHES Radar Systems Group's Processor Division, and the IBM Federal Sector Division.
The following analysis would not be possible without the cooperation of these respective entities.
The General Dynamics Fort Worth Division owes each a debt of gratitude.

Accesion For \

NTIS CRaad od
]
]

DTiC 7aB
Urannounced
Justification

Sertesadaveriaris ecencvencens..d

BY o
Di.t ibuztion]]

Avaiabiiity Codes
[Avall andjor
Specui

At

=

Dist

iii

‘”-u"' -

EW
HOL
IC

I/0
ISA
JIAD
JIAWG
LAN
LH
LRM
LRU
MASA
MMC
MLU
MOU
MRF
MTBF
MTBMa
NAVAIR
NGCR
NOSC
0

PC
PI-Bus
POSIX
RTOK
RTS
SEE
SEM-E

ACRONYM LIST

Allied Standards Avionics Architecture Council
Built-in Test

Common Avionics Baseline

Common Integrated Processor
Communication Navigation Identification
Can Not Duplicate

Central Processing Unit

Digital Avionics Integrated Suite
Environmental Control System

European Fighter Aircraft

Electro-Optical

European Participating Country

Electronic Warfare

High Order Language

Integrated Circuit

Input/Output

Instruction Set Architecture

Joint Integrated Avionics Directorate

Joint Integrated Avionics Working Group
Local Area Network

Light Helicopter

Line Replaceable Module

Line Replaceable Unit

Modular Avionics System Architecture Study
Modular Mission Computer

Mid Life Update

Memorandum Of Understanding

Multi-Role Fighter

Mean Time Between Failure

Mean Time Between Maintenance Action
Naval Air Systems Command

Next Generation Computer Resource Program
Naval Ocean Systems Center

Operating System

Personal Computer

Parallel Intermodule Bus

Portable Operating System Information Exchange
Retest OK

Run-Time System

Software Engineering Environment
Standard Electronic Module E

iv

SP-Bus
SPAWAR
STANAGS
SYSCOM
TM-Bus
VHSIC

ACRONYM LIST (Continued)

Signal Processing Bus

Space and Naval Warfare Systems Command
Standard Avionic Guide Specification
System Command

Test Maintenance Bus

Very High Speed Integrated Circuit

R k) T T ™ Ly

iii

TABLE OF CONTENTS
PREFACE
ACRONYM LIST ...ceesesincnescsscncnsenens
LIST OF FIGURES AND TABLES

vl V

vii

I. CHARACTERIZATION OF THE PROBLEM ..

1

LA. INTEROPERABILITY SPACE.........

I.B. UNDERLYING PROBLEMS RELATED TO MODULARITY AND

COMMONALITYcovsininnissisisscsassissssissssssessssssssassossssasss 2
LB.1. DEVELOPMENT TIME AND COST 2
I.B.2. PRODUCTION COSTS.... 3
I.B.3. SUPPORT COSTS . 3
I.B.4. OPERATING EFFECTIVENESS AND COSTS.......ccoocueee. 5
I.B.5. SYSTEM UPGRADE COSTS - 8
I.B.6. ELECTRICAL POWER AND COOLING 9
I.B.7. SOFTWARE COST CONSIDERATIONS 11
I1. CORE AVIONICS AND ARCHITECTURES..........mvninniniisissannssaseacsssssanns 11
II.LA. COMMON AVIONICS BASELINE.. 11
II.A.1. SYSTEM ARCHITECTURE 12
IL.A.2. INTERCHANGEABLE MODULES 14
II.LA3. APPLICATIONS PROGRAMMING INTERFACE
STANDARDS.. 17
II.LB RELIABILITY 20
ILB.1. TWO-LEVEL MAINTENANCE DESIGN CONCEPT......2 1
I1.B.2. AVIONICS RELIABILITY AND FUTUREBUS+............ 21
II.C. RECONFIGURABILITY .. 21
II.C.1. FEDERATED VERSUS DISTRIBUTED CONTROL........... 23
II.C.2. PRIORITIZATION REQUIREMENTS 26
I.D. SCALEABILITY 26
ILE. EXTENSIBILITY 28
ILE.1. EXTENSIBILITY CONCEPTS.............. .28
IL.E.2. OPPORTUNITIES FOR COMMONALITY AND
MODULARITY ...cccuniuresuinnsennerssssssncasensosseassanss 29
iLLE.3 INTERNATIONAL DEVELOPMENT AND
STANDARDIZATIONcoovrenirrninseniesnincasmmsassussssnsasssssescasessssssassons 35
III. CHARACTERIZATION OF THE SOLUTION............... 38

vi

LIST OF FIGURES AND TABLES

Figure 1. Modular Interoperability From an Avionics Standpoint.....

Figure 3. Navy and Air Force Aircraft

Figure 4. The JIAWG CAB III Specification
Figure 5. The CAB III Computer Architecture
Figure 6. The Components of an SEE

Types

Figure 7. Overview of Airforce Standardization Effort

Table I. Typical Avionics MTBMa, CND, & RTOK Rates

Table II. Theoretically Achievable MTBF Values

Vil

13
15
16
18

......................................

36

I. CHARACTERIZATION OF THE PROBLEM
LA. INTEROPERABILITY SPACE

Any analysis of standardization requires a high degree of abstraction. Such an observation is
particularly true for the objectives of standardization. Drawing on its years of experience in
avionics, the General Dynamics Fort Worth Division has been able to generate observations for
both SPAWAR-231 and NAVAIR-546B at a very high level of abstraction without becoming
needlessly complex. Once undertaken, standardization efforts tend to lose sight of their objectives
because of the massive amount of technical information they must generate. The consequences of
this phenomenon are explicitly addressed in the subsequent analysis.

In the avionics application domain, the primary objective of standardization is modular
interoperability (i.e., self-contained and discrete hardware "modules” used interchangeably across
an architecture). Its benefits are obvious. Using interoperable modules in an aircraft (e.g., the A-
X) is thought to reduce its lifecycle costs. Using interoperable modules in a variety of aircraft
(e.g., the A-X and NATF) is thought to reduce lifecycle costs even further. In addition, the use of
a Common Avionics Baseline (e.g., CAB III) across different types of aircraft (e.g., the F/A-18-
E/F and an internationalized MRF) is also thought to reduce lifecycle costs. However, regardless
of what modularity is achieved and which baseline is used, the implemented architecture must
support its mission requirements as specified by the SYSCOM with oversight responsibility (i.e.,
NAVAIR).

In summary, modular interoperability can be approached from three different directions (reference
Figure 1):
1) an Operating System comprised of interface primitives
driving Instruction Set Architectures (e.g., the Mil-
Std 1750A) and Backplanes (e.g., PI-Bus and
Futurebus+);
2) a Tactical Database Management System comprised of
access primitives driving the reconciliation and use of
tactical information across an avionics architecture;
and
3) Core Avionics exercising the Operating System and/or a
Tactcal Database Management System.
Attempting to implement modularity without understanding its effect in all three directions can be
disastrous. Attempting to use commonality across avionics baselines withsut establishing its
impact in each direction can be equally disastrous.

In the avionics application domain, modularity and commonality are not solely matters of
technology, capability, performance, or logistics. Although each of these areas is clearly involved
in the implementation of modularity and commonality, the overriding issue is economic because of
diminishing budgets. In the face of sharp budgetary cutbacks, economic considerations assume far
greater importance and demand the exploration of every opportunity for cost savings.

The overall issue of cost savings extends beyond modularity and commonality to several other
closely related problem areas which must be examined (e.g., development time and cost as well as
production costs). Intelligent implementations of modularity and commonality can alleviate these
problem areas. Poorly conceived implementations can exacerbate them. In fact, all benefits
claimed for modularity and commonality can easily be cancelled when their subsequent
implementation generates more problems than it solves.

Core Avionics

Interface Primitives Access Primitives

Operating System Data Base Mgmt System

ISA Interface ISA Interface

Underlying Instruction Set Architecture

Figure 1. Modular Interoperability From an Avionics Standpoint
L.B. UNDERLYING PROBLEMS RELATED TO MODULARITY AND COMMONALITY

Because closely related problem areas should be examined before modularity and commonality
efforts are undertaken, the following discussion addresses the underlying problems in current
systems with respect to modularity and commonality. The discussion considers basic avionic
architecture issues in the broad sense and relates them to economics. Such broad-sense issues
include systems architecture, interfaces, iaterconnections, support, packaging, and installations.
All these issues a: = interrelated and cannot be treated separately.

LB.1. DEVELOPMENT TIME AND COST

Increasing the system hardware and software complexity of avionic systems continues to drive a
constant increase in development cost and time. Because virtually all hardware and software for
each new system is typically a new deveiopment, program schedules lengthen and costs increase as
a consequence of the growing complexity. Without major technical breakthroughs, the only
apparent route to significant schedule and cost reduction appears to be via significant re-use of
hardware and software designs across multiple programs.

Unfortunately, little re-use of either hardware or software has been realized across different
weapon systems or even within different portions of the same weapon system. Counter to several
attempts to alter this situation, the general tendency has been to re-invent each hardware and
software item as new application requirements are specified.

There are several fundamental obstacles to re-use. From a technical standpoint, hardware or
software from one system rarely adapts easily to another system because of different operational
and/or application requirements. One size simply does not fit all. The problem is further
exacerbated by a continually changing technology that allows system functions to be implemented
with improved hardware as each successive system is initiated. Another complication is that new

2

contractors introduce different viewpoints and seldom consider use of their competitor's product.
Even congressional mandates appear ineffective against such apparently impregnable re-use
obstacles!

If any significant degree of design commonality is to be achieved, the re-use of previous designs
must be realized. An effective means to overcome re-use obstacles must be devised. Each problem
must be carefully addressed and realistic solutions must be developed. Otherwise, any
commonality initiative will be short-lived and ineffective.

1.B.2. PRODUCTION COSTS

Avionic systems have become a major segment of production cost for modern weapon systems and
this cost element is tending to increase with each new system. Unfortunately, the basic avionics
cost is only the tip of the cost iceberg. The combined costs of

(@) theclosely-related production cost for electrical

wiring,

(b) intermediate and depot support equipment, and

© spares for both avionics and avionics support equipment
increase the total actual avionic systems cost far beyond the cost of the avionics alone.

Because total productior quantities for typical avionic systems are relatively low (sometimes in the
range of only a few hundred), the high production-related costs for tooling, production test
equipment, and production training must be amortized over small production runs. Consequently,
typical military avionics production costs run many times that of non-military electronic equipment.
It is not uncommon for avionics costs to exceed the price of gold on an ounce-for-ounce basis!

The major avionics-related cost of associated aircraft electrical wiring is also following the avionics
complexity and cost increases. Although serial muitiplex use has provided some cost relief,
avionics wiring continues to be a major cost item. For example, the electrical hamesses in the
multiplexed avionics of the relatively small F-16C contain more than 19,000 wires and add 742
pounds of dead weight. (This complexity increased from less than 15,000 wires for the F-16A
which had similar, but less complex, avionics.) Typically, the average manufacturing and test
labor per aircraft hamess conductor is approximately 0.75 manhours. Assuming a typical cost to
the Government in the range of $70 per manhour places the cost of each conductor at over $50. At
this rate, the total electrical wiring cost for the above cited F-16C example is nearly $1 million per
airplane! This is clearly a significant avionics-related cost.

L.B.3. SUPPORT COSTS

Avionics support costs over the life of a weapon system typically far exceed the high initial
avionics production costs. (These costs are also rising with increasing avionics complexity.)
Hence, support costs must be carefully considered as integral e}ements of any modularity and
commonality efforts. Major contributors to support costs are discussed below.

Spares:

Avionic spares are always a major item of cost for any system. Spares must be available at each
aircraft operating site to quickly replace removed avionic units at the aircraft level. If the aircraf?-
level replacement unit is a large and expensive avionic unit, then a con2sponding avionic unit raust
be available as its spare. Sufficient quantities of such spares must also bz provided to fill the entire
repair pipeline through the intermedia.¢ avionics shop or cther avioaic repair center used to return
failed units to serviceable condition. In cases involving remote repair sites, significant additonal
numbers of spares can be required to allow for transportation lags between operating units and

repair centers. For this reason, it is usually cost effective to provide local repair capabilities for a
high-cost unit.

Spares cost is one of the chief driving forces toward both

(a) a high degree of avionics modularity and

(b) multi-use avionics or commonality.
Ideally, avionic systems would consists of small, low-cost (perhaps throw-a-way) electronic
modules that could be quickly replaced at the aircraft level. In addition, each such module would
have many applications both in the same aircraft and across multiple aircraft, thereby minimizing
the number of spare types required. Such a utopian condition would result in the lowest possible
spares cost plus eliminate the expensive intermediate and depot-level repair facilities. Any
modularity and commonality effort should strive toward such a condition.

Support Equipment:

Avionics support equipment generally includes aircraft-level, shop-level, and depot- or factory-
level test equipment. The usual absence of standardization in avionics design both within each
weapon system and across different weapon systems generally leads to largely different support
equipment for each avionic system. Even in efforts directed toward use of common support
equipment, costly adapters and software development are usually necessary for the different
systems (thereby defeating many of the standardization objectives).

Some primary factors in avionics support equipment complexity, support equipment variations
between different systems, and support equipment cost are
(@) avery large number of different interface types and
(b) large numbers of interfaces between avionic elements
atall levels.

Except for a few limited examples of functional and electrical interface standardization such as
MIL-STD-1553, little actual standardization exists in current systems. Current standards efforts
directed at high speed data bus and standard parallel interfaces such as PI-Bus and Futurebus+
offer another important but limited level of interface standards. However, the vast majority of
interfaces remain entirely untouched by current standardization efforts. Even with such standards
as these, the problem of variations by different manufacturers and programs remains a major
hurdle. An example of such variations is evident in the several variations of MIL-STD-1553 that
have evolved either as a result of the continuing process of standard definition or as a result of
individual program-driven variables.

As long as the number of interface types is large, the problem of providing test equipment at all
levels will be significant and standardization will be difficult. At best, such equipment continues to
require costly software as well as costly and bulky test adapters for each system test application.

The very large numbers of electrical interfaces both between avionic boxes and intemnal cards or
modules translates to excessive test equipment complexity in terms of both software and hardware.
Typical avionic circuit cards or modules have several hundred individual electrical connections,
each of which must be accessed and tested by the support equipment. (In many boxes, several
thousand such interconnects are used.) The test problem is further complicated by the problemn of
isolating problems between individual cards or modules and the often complex interconnecting
backplanes. Typically, the most difficult isolation problem is that of isolating a connecior pin
problem, especially if the problem is intermittent. In many cases, the isolation problem is so
difficult that the test equipment designers adopt the totally illogical assumption that the connections
are good and subsequent design test equipment with its tests are based on this assumption.

Logistics Chain:

Each avionic item subject to repair or replacement must have a suitable logistics support chain
established and maintained for the life of that item. Provisions must exist for

(@) adequate spares provisioning, stocking and supply;

(b) return of repairables to repair centers; and

(¢) return of repaired items to using organizations.
These logistics chains require large numbers of personnel and facilities and are a major cost
element in avionics support.

Because each different type of item must be separately treated in the logistics chain, proliferation of
item types significantly increases the logistics problem and cost. The current use of different
designs at different points within a single weapon system and across different weapons systems
results in such proliferation. Hence, logistics chain impact should rank high in modularity and
commonality considerations.

1.B.4. OPERATING EFFECTIVENESS AND COSTS

Avionic systems are a key factor in both weapon systems effectiveness and operating costs. Fully
operational avionics systems are essential to most modern weapon systems. Although strong
emphasis upon avionics reliability has generally resulted in improved availability despite
complexity increases, the need for improvement remains urgent in terms of operating effectiveness
and cost.

Support Personnel:

Large numbers of support personnel are required for avionics maintenance support at the aircraft
and the avionics shop to test, trouble-shoot, and repair the complex avionic systems of most
military aircraft. Significant numbers of additional personnel are also required just to maintain the
complex avionics support equipment used by personnel involved in avionics test and repair. All of
these personnel are, in tum, supported by an entire chain of other support personnel of all types.
The overall operating cost for avionics support is of major significance.

The current proliferation of different equipment types tends to increase the number of support
personnel. Personnel requirements are increased because of difficulties in cross-training personnel
to effectvely support systems of different design. Hence, standardization that reduces the number
of equipment types offers real promise of significant reductions in support personnel.

Operational Availability:

Both operating effectiveness and operating costs are closely tied to systems operational availability.
Availability is, in tum, primarily driven by basic reliability and ease of repair. Both are
improvement candidates as a part of modularity and commonality efforts. Likewise, both can also
be adversely affected if they are not properly considered an integral part of a modularity and
commonality program. The following discussion addresses some major underlying reliability and
repairability problems needing attention during modularity and commonality efforts.

New Designs Introduce New Reliability Problems:

Design of new and different system elements for each application usually introduces new reliability
problems that must be overcome for each new design. With the current relatively low production
quantities for most system elements, it is very difficult to achieve a fully mature design. Such low
quantities reduce the feedback opportunities from the field. As a consequence, it becomes
extremely difficult to develop experience databases adequate enough to ferret out reliability

5

problems. Typically, the only problems <orrected are those that arise during formal reliability
testing programs. Even with the best of reliability testing, actual field conditions that may create
serious problems are often inadequately simulated.

Interconnections Pose Significant Availability Problem:

Although VHSIC technology is resulting in some reductions in avionics interbox and intercard
interconnections by combining more and more functions onto single cards or modules, the
interconnection problem continues to loom as a major reliability and repairability factor. This often
discounted, and sometimes ignored, problem appears in the basic ways discussed below.

Effect of connections on systems reliability is subject to wide disagreement. Typically,
historically-based failure data collected from field failures tends to indicate acceptably high levels of
reliability for interconnections. However, analysis of
(@ the usual reporting process,

(b) other field reports from field service personnel, and
] © accounting methods for unconfirmed problems

raise serious questions regarding the validity of such statistical connection failure rate data. In fact,
y conclusions drawn from such statistical data are often dramatically different from conclusions made
by experienced service personnel!

Most field failure reporting methods will indicate a connection failure only if a connector or
connector part is replaced. If a problem is cleared after de-mating and mating a connector, any
written report will typically indicate either no confirmation of the problem or a re-test OK. In fact,
a very common practice for service technicians is to re-seat circuit cards or de-mate and re-mate
connectors prior to test. Such practices normally stem from practical technician experience that
such actions often clear problems. Such conclusions are likely to be true because the inherent
mechanical wiping actions of connector pins and sockets can easily clean contacts of contamination
or corrosion products that may render a connection inoperable or intermittent. In many cases, field
technicians elect not to write up known connector problems because th=v believe such problems are
so common and so inherent in avionics that another field report of failure will not change the
situation.

In most analyses of field reliability, failure reports that do not result in confirmed component
failure are assumed invalid and therefore discounted in assessing equipment reliability. Most such
analyses conveniently ignore the possibility of intermittent failures or connection failures cleared by
field card or connector re-seating. Reports of failures not confirmed as component failures are
typically attributed to maintenance errors. Consequently, "observed" field reliability often comes
close to the predicted values. The vast differences in "observed" reliability and actual availability
for combat are dismissed as training or personnel problems!

Table I. shows reported mean time between maintenance actions (MTBMa), could not duplicate
(CND), and re-test OK (RTOK) reports for a set of avionics for a current USAF fighter aircraft for
one period of time. Note that nearly 23% of all maintenance actions resulted in a CND and that of
items sent to the next level of repair, nearly 26% resulted in a RTOK. Similar data examined for a
much later design fighter aircraft show a very similar pattern.

Table I. Typical Avionics MTBMa, CND, & RTOK Rates

Major System MTBMa | CND% | RTOK %

Radar 5.1 30.4 25.8
Head-up Display 17.7 37.6 25.3
INS 21.2 30.7 44 .1
Armament Control 30.4 0.9 22.9
Countermeasures 31.3 13.6 9.9
Air NAV Indicator/Signal Proc.| 45.4 25.3 18.7
Digital Computer 68.4 13.1 57.2
ALL AVIONICS TOTAL 1.7 22.9 25.7
(Includes Fuel Control,

TACAN, etc) 1

Source: USAF 66-1, 1980

Analysis of field failure data for a current inventory aircraft computer revealed that for 73% of all
removed units, no failures were confirmed. Although personnel and software errors clearly
contributed to some of the removals, intermittent connections are likely culprits in many cases.
The computer in question has nearly 5,000 connector pins!

The significance of the impact of connections on avionics reliability is indicated by two published
study results cited below. One U.S. Navy study of avionics failure causes reported by C. N. Bain
indicated that 60% of all failures were due to cables and interconnections while only 1.5% were
due to IC failures [Reference 1]. A 1986 study by Harris Corporation into potential design actions
to improve MTBF indicated that of all potential changes studied, the largest single improvement in
an avionics computer theoretically achievable MTBF values would result from elimination of the
very large number of printed circuit card backplane connections. The information in Table II. is
repeated here from a table presented in 1986 by L. R. Webster & J. M. Madar of Harris
Corporation [Reference 2].

Table 1. Theoretically Achievable MTBF Values

Reliability Action Resulting MTBF
(Hrs.)
Baseline System MTBF 10,912
Provide Power Supply Redundancy 12,250
Eliminate VLSI Chip Failures 19,769
Eliminate Card-Chip Connections 40,000
Eliminate P/C_Connections 471,216

Improvements Are Assumed To Be Made Cumulatively in Order of Listing

Source: 1986 Proceedings-IEEE Annual R&M Symposium- p.305
L.R.Webster & M. Madar, Harris Corp.

-l

Interfaces Present Serious Repairability Problem:

Repairability in current systems is made difficult by
(@) the very large number of interfaces and
(b) the large number of different interface types
present in typical avionics systems. Because modular approaches can easily cause these problems

to become even more difficult, they must be carefully considered in modularity and commonality
efforts.

Large numbers of interiaces often make it extremely difficult for the technician to isolate a problem
to a specific replaceable element at either the aircraft or shop level. Even the most comprehensive
BIT normally does not test interfaces or isolate interface problems: The task is simply too large to
tackle with a practical BIT! A similar problem typically exists even with shop test equipment used
for box internal fault isolation: Here again, the sheer number of interfaces make comprehensive
tests impractical!

The above problem is confounded by the large number of different interface types encountered. It
is difficult to provide adequate interface test capability for complete interface testing even in
complex shop-level test stations: The problem becomes totally impractical for most aircraft-level
test equipment needed for interface testing.

As a direct consequence of the above test limitations, the technician is often driven to pure
guesswork with respect to locations of failures to a replaceable item. In cases of a connection
problem, the situation is totally impossible! The usual end result is "shotgun" maintenance in
which multiple items are replaced in the hope of correcting the failure. Such actions overload the
repair chain and create demand for an excessive number of spares to support the repair pipelines.
Because most avionic items are far more susceptible to physical damage during handling in the
repair chain than in the aircraft, a frequent side "benefit" is additional handling induced failures.

Aircraft Wiring Can Pose Serious Availability Problems:

Aircraft wiring associated with avionics poses one of the most difficult avionics system availability
problems. Wiring problems can easily appear to be difficult to isolate avionic problems that often
result in repeated replacements of avionic units in futile attempts to correct problems. At best,
aircraft wiring problems are not only difficult to detect but, at worst, are often difficult to isolate
and repair because of

(@) large numbers of bulkhead and production break

connectors and

(b) frequently difficult access problems.
Such problems are often confounded by the intermittent nature of connector problems. The total
elapsed time to trouble-shoot and correct wiring problems can easily be measured in days!

Because avionics-related aircraft wiring is directly related to avionics design, impact of this aspect
of the system is due full attention during any modularity and commonality effort.

I.B.5. SYSTEM UPGRADE COSTS

Most military aircraft undergo one or more avionic system upgrades during their lifetime. Such
upgrades typically add or change capabilities as mission changes occur. In some cases, capabilities
not practical or possible during initial design because of technology limitations are included as
upgrades.

In typical cases, system upgrades involve total replacement of major portions of avionic hardware
and software. The existent equipment is junked. Furthermore, system support equipment is often

replaced along with the prime mission equipment, thereby increasing the upgrade cost. Such
upgrades are also reflected in major upheavals in terms of logistics and training.

Such upgrades often involve complete new systems hardware and software designs. Cost of such
efforts typically exceed the development and production costs of the original systems. In the case
of aircraft installation provisions and wiring, such changes involve the added expense of removing
existing provisions and wiring.

Because of the virtual certainty of such upgrades and the attendant high cost, any modularity and
commonality effort should attempt to ease such downstream changes. New technology insertions
should be accommodated without wholesale discards and re-designs.

I.B.6. ELECTRICAL POWER AND COOLING

Avionic systems have become increasingly power hungry with increasing capability and
complexity. Aircraft electrical power generation and distribution systems have experienced major
growth in terms of sxze, mass, and power taken from propulsion systems. Because most electrical
power consumed by avionics must be disposed of as heat, aircraft environmental control systems
(ECSs) have grown in lockstep with the electrical systems. The ECS draws i increasing amounts of
engine power and adds significant mass to the airplane. Because an ECS will typically dump the
heat generated into the aircraft fuel supply, fuel temperatures are raised, thereby reducing engine
performance. In many instances, aircraft have reached the upper limits of the heat they can
dissipate.

The power and cooling issue is important to modularity and commonality efforts because choices
made during such efforts can have significant effects on power and cooling. Such choices must be
carefully addressed as part of modularity and commonality efforts.

Interface Power Use:

Analysis of typical avionics power uses has shown that the majority of electrical power is
consumed by communication interfaces between avionics units and between avionic cards or
modules. For example, it is not uncommon for current MIL-STD-1553 connected avionics units to
use a third of their electrical power for serial input/output and multiplex bus drivers. (In one
extreme example, two-thirds of the electrical power used by one F-16 avionics LRU is used for
serial MIL-STD-1553 bus interfaces with other equipment!) Inside-the-unit communications are
also high power users. Typical parallel data bus interface drivers supporting inter-card parallel bus
communications account for 25% of the total power consumption.

The avionics interface power consumption situation does not appear to be improving with
advanced technology systems. For example, analysis of power usage for one proposed integrated
rack containing 30 SEM-E format modules using PI-Bus and High Speed Data Bus interfaces
indicated that over 70% of the 750 watts consumed by the unit was used for serial and parallel
interfaces. High Speed Data Bus interface modules were found to require 35 watts per module in
comparison to approximately 25 watts required for the lower-speed MIL-STD-1553 interface
modules. (Higher speed serial data buses normally require even more power to assure reliable
communications.) Given these circumstances, it is not surprising that cooling has become a major
design consideration for integrated racks.

Because of the heavy use of electrical power by interfaces, strong emphasis upon interface power
reduction is a highly attractive objective of any modularity and commonality effort. The interface
power use is strongly affected by which interface standards are adopted. If power consumption is

not given full consideration, new standards can easily create increased levels of power and cooling
problems.

Packaging Cooling Considerations:

Primary drivers in packaging of avionic cards or modules are usually
(@) module connector size requirements and
(b) the need to contain multiple modules in line
replaceable units.
Typically, a minimum module width is determined by the space required for the backplane
connectors. In turn, the backplane connector sizes are controlled by module interface
requirements. Module height is then determined on the basis of providing sufficient card space for
card functions within the established width. In cold plate cooled equipment, a secondary
consideration is the requirement for an adequate heat transfer area at the module edge. Because
increasing module height is often undesirable, great emphasis is frequently concentrated on
(a) improved module edge clamping for improved heat
transfer or
(b) indevising improved cold plate cooling.
Some systems have resorted to liquid or complex vapor cycle cooling schemes to provide the
necessary degrees of cooling. In a few desperate situations, designers have resorted to use of
hollow modules with coolant circulated inside the modules.

Figure 2. provides a general view of the usual module packaging situation that results. In fact, the
JIAWG SEM-E module is a recent example of a module aspect ratio set by the above
considerations. Note that the typical large width-to-height ratios tend to result in long heat flow
paths from electronic components at the center of the modules which tends to complicate cooling
requirements.

Height Is Only Real Aspect Ratio Variable

V= =

AULLUARIRISY o o WADIALIAIAL o
—

Typical
Module

HJ—.

Connectors >
(Minimum Width Set By Pin-Outs)

Long Heat Flow Paths to Rack
Cooling Interface - Complicates Cooling

Figure 2. Typical Module Aspect Ratio Considerations
Module packaging affects the development of standards and requires careful considerations during

modularity and commonality efforts. Once more, interface standards are a determining factor
because interface requirements are a major driver in module packaging. Efforts toward

10

@) reduction of backplane interfaces and

(b) reduction of electrical power requirements
as a part of modularity and commonality activities can have significantly beneficial effects on
packaging and cooling.

LB.7. SOFTWARE COST CONSIDERATIONS

The total lifecycle cost of system software has become a very large factor in avionic system cost.
Software development is the major cost item in new systems development as well as continuing
lifecycle cost item as a result of almost continual modifications throughout the life of a system.
When major system hardware upgrades are incorporated, the software cycle starts over again with
almost the same level of cost as the original software.

Typical avionics software programs are complex packages of many different software modules
designed to run on a single or multiple set of processors. Modules may be closely related from a
functional standpoint or related only by virtue of sharing a common processing function. The total
complexity level and the potential impacts of timing interactions of even unrelated software
processes create requirements for extensive software development testing both for initial
development and for each software change. These test efforts require large amounts of manpower
and elaborate software test facilities to enable validation of the software programs prior to flight
use. The software test facilities hardware and simulation/test software development tasks can even
exceed that of the aircraft systems development.

Software re-use between different systems of the same or different aircraft is rare for several
reasons. Interfaces at the software level are again a major obstacle. Most software modules are
designed with unique interfaces to other software modules, processing systems, or operating
svstems (each of which has unique interfaces). A particular software process or module is usually
designed to execute on a particular processor and in conjunction with other software elements
specifically executing on that processor or another processor. Interfaces are not uniform and each
process must be designed to execute in a special system location.

The software cost situation is not hopeless and should be attacked as an integral part of any major
modularity and commonality effort. Efforts toward standardization of software interfaces;
reduction of non-essential interactions; development of standard modules and processes; and
enabling at least some degree of transparency with regard to hardware location of software
elements should be considered. Standardization of an Operating System (e.g., POSIX) or of a
Backplane (e.g., Futurebus+) cannot be achieved without demonstrable impacts in Core Avionics
and Tactical Database Management Systems. To achieve interoperability across an Operating
System and a Backplane when it does not exist for Core Avionics and Tactical Database
Management Systems will be extremely difficult.

[I. CORE AVIONICS AND ARCHITECTURES
IL.LA. COMMON AVIONICS BASELINE

There are three major areas of consideration when choosing a common avionics baseline for both
retrofit and new aircraft. The first area is the system architecture (i.e. the method of partitioning
and configuring the avionics system from a box-level processing and communications
perspective). The second area is concerned with the items that make up the box and how to
provide the communications interfaces, data processing, and data storage to enable the box to
perform its functions and communicate with the rest of the avionics system. The final area is
avionics development which encompasses the tools used to develop and execute the software.

11

' DR R T U e T

These tools include the the software engineering environment, the higher order language, the run-
time support system, and the operating system.

Each area of consideration is addressed in the following sections. A brief overview of the topic is
provided discussing the relevant standards and how they would apply to certain candidate aircraft.
The issues are discussed for each topic, and suggestions are provided.

I.A.1. SYSTEM ARCHITECTURE

Avionic system architectures can be categorized into four generations. A first generation system
architecture is one which uses entirely analog systems. This type of architecture is representative
of the A-6 or the initial F-16 avionics systems.

A second generation system architecture is one in which digital avionics are incorporated into the
aircraft in the form of line replaceable units. This type of architecture is representative of the
avionics suites for the F-14 and F-18 aircraft and the F-16 Blocks 10-50. The second generation
architecture is characterized by hardware standards such as the MIL-STD-1750A data processor;
interface standards such as the MIL-STD-1553B data bus; and software standards such as the use
of the Jovial J73 higher order programming language (MIL-STD-1589).

Third generation architectures apply the concept of common modules to the digital processing
functions of the avionics suite. This type of architecture is representative of the avionic suites
being developed for new aircraft such as the F-22 and the Comanche Light Helicopter, and retrofits
being applied to existing aircraft such as the F-16 modular mission computer (MMC), where the
functions of three existing avionics boxes are being replaced by a single, air-cooled box containing
common modules. The F-22 uses a family of modules based on a signal processing type computer
architecture, whereas the F-16 MMC uses a family of modules based on a data processing type
computer architecture.

A common module based architecture encompasses a family of digital data processing, interface,
and memory modules which conform to a standard size, connector and pin arrangement. The
common module architecture also specifies the interfaces external to the box and the interfaces to be
used for intermodule communications. A good example of a common module based architecture is
provided in the Modular Avionics System Architecture Study (MASA) Final Report (FZM-8084 17
May 1991 of Contract F33657-84-C-0247 performed for the Air Force ASD-ALD/AX) where the
use of common modules were investigated for retrofit of existing avionics.

Fourth generation architectures extend the common module concept to not only the digital
processing functions but also the analog processing (i.e. radar, electro-optic, and electronic
warfare pre-processing) functions. This architecture generation provides the specifications and
building blocks for developing the entire avionics system architecture and is representative of the
avionic suites being proposed for post-2000 aircraft such as the Navy's A-X and Air Force's
Multi-role Fighter (MRF). Figure 3. provides a look at how existing and future Navy and Air
Force aircraft are classified by their generation of avionics system architecture.

12

Generation

Aircraft

1st | 2nd] 3rd | 4th
A-6 X
F-14 X
F-18 X
AX X
F-16 (BLK 5) X
F-16 (BLX 10-50) X
F-16 MMC X X
F-22 X
MRF X

Figure 3. Navy and Air Force Aircraft by Avionics Architecture Generation

Issues:

Issues in the area of architecture development apply mostly to the retrofit case. For the retrofit case
two options are available: replacing the functions previously performed by multiple LRU boxes
into a single LRM box (such was the case for the F-16 MMC program) or replacing the entire
avionics system, with supporting structure, cooling, and power modifications. Both of these
options were investigated under the MASA program.

The first option, replacing the functions of multiple boxes into a single LRM box, requires
investigation of the functions to be performed by the system and the cooling, volume, and other
support resources available on the target aircraft. Digital data processing type functions such as the
fire control, stores management, and heads-up display functions being rehosted to the F-16 MMC,
can use third generation modules and a data processing type architecture while functions such as
the radar, electronic warfare, and electro-optical system require a signal processing type
architecture and either third generation modules only or a combination of both third and fourth
generation modules. If the sensor design is to use existing pre-processing LRUs, third generation
modules are required. If the sensor pre-processing LRUs are to be replaced with a modular
system, then third and fourth generation modules are required.

Originally, it was thought that common module based avionics would require liquid cooling for
retrofit applications. This posed a significant problem for forced air cooled aircraft such as the F-
16. However, it was found that the F-16 could provide sufficient cooling for a single data
processing box of this type. This may not be the case for retrofitting multiple modular avionics
boxes or for third generation avionics which use an approach similar to the F-22 Common
Integrated Processor (CIP).

The CIP being developed for the F-22 production program is a large, multi-tiered common module
box that is based on a signal processing computer architecture and requires liquid cooling for
operation. The CIP incorporates a majority of the F-22's functions. For retrofit applications under
Option 1, the CIP cannot be used in its defined form for air-cooled, retrofit applications because of
size and cooling constraints, but a system for performing signal processing functions for retrofit
aircraft can be developed from the F-22 modules. Again, reference the MASA report for designs
of signal processing systems for retrofit aircraft. If liquid cooling is still required, local liquid
cooling technology is available. However, the amount of modular systems that can be retrofitted
into existing aircraft is limited by the total cooling capacity of the environmental control system
(ECS) unless upgrades to the cooling system are considered.

13

The second option, retrofitting the entire avionic suite with modular avionics, provides more
flexibility to the customer but this flexibility comes at the expense of increased up-front cost. To
retrofit the entire avionics system, an upgrade to the aircraft's cooling system must be considered
because of the increased heat density of an entire modular avionics system, and the internal
structure changed to accommodate SEM-E modular avionics racks. This need was expressed in
the MASA study since a majority of the options considered overloaded the F-16 ECS and required
innovative packaging techniques to fit in the unique volumes for so small an aircraft. To overcome
the cooling problem, the MASA study suggested the addition of a vapor based cooling system.
The other alternative that can be considered is an entirely liquid cooled based system such as that
being developed for the F-22.

Suggestions:

For retrofits to existing aircraft such as the F-14, F-18, and F-16, the MASA study provides
solutions from replacing single boxes in the avionics architecture to retrofitting the entire avionics
system and adding new functionality. The MASA study provides trades from both a performance
perspective and a cost perspective. It is suggested that functions, such as the fire control, stores
management, and head-up display being rehosted for the MMC, use a CAB III data processing
type architecture and that signal processing systems (i.e. radar, EO, EW) use a signal processing
type architecture. It is also suggested that the F-22 CIP not be used in its defined form for the
Option 1 case for retrofit of digital signal processing functions, because of the size and liquid
cooling constraints. Also, the CIP should not be used for data processing only functions because
of the size and overhead incurred when using a signal processing type architecture.

For remrofit of the entire avionics system using common modules (Option 2), the total cooling load
for the system has to be considered. If the cooling system analysis confirms that the ECS is
overloaded, hybrid systems such as the addition of a vapor based system would provide a lower
cost solution than replacing the entire air-based ECS with a liquid-based ECS.

Future aircraft using fourth generation avionics will require a higher degree of functional
integration than third generation designs. New aircraft such as the A-X and MRF and later
versions of aircraft such as the F-22 will drive the design of the analog processing modules For
development of future modular avionics systems, it is suggested that the applicable CAB
specifications at the time be used. Itis also suggested that the Navy be involved with the
development of the analog processing modules to interject any peculiar requirements these modules
may need to have for Navy systems. For a discussion of the design issues for applying modular
avionics to analog pre-processing systems, see section five of the MASA final report.

I1L.A.2. INTERCHANGEABLE MODULES

To implement an avionics architecture based on common modules, the term common must first be
defined. As of now, the term common or line replaceable modules (LRMs) embodies a host of
standards developed by the Joint Integrated Avionics Working Group (JIAWG) under their
Common Avionics Baseline (CAB) III specifications and modules developed for programs such as
the F-22 and the Comanche Light Helicopter. These standards define things such as the number
and types of modules, the interfaces between boxes and between modules, the physical attributes
of the modules such as the module size and connector type, and the electrical attributes such as the
connector pin assignments and power levels. Reference Figure 4.

14

INTERNAL BUS INTERFACES
- PI-BUS

- TM-BUS

- SP-BUS

MODULE CONNECTOR/BACKPLANE
- PHYSICAL DIMENSIONS

- PIN ASSIGNMENTS

- EMISHIELDING

- POWER TYPES & LEVELS

COOUNG INTERFACE
- CENTRAL COLD RAIL

MODULE SIZE
-SEM-E

EXTERNAL BUS INTERFACES
- HIGH SPEED DATA BUS

- MIL-STD-1553B

- DISCRETE INPUT/OUTPUT
- MIL-STD-1760

MODULE TYPES

- DATA PROCESSING

- SIGNAL PROCESSING

- SECURITY PROCESSING
- DISPLAY PROCESSING
- MEMORY

- INTERFACE

“POWER SUPPLY

Figure 4. The JJAWG CAB III Specification Addresses all

The CAB III specification provides standards for almost every conceivable building block required

Hardware Itemns

for implementing an LRM based avionics system, with the exception of analog pre-processing

modules required for the radar, EQ, and EW pre-processing functions. Standards are available for
implementing two different types of avionics architectures, a data processing based architecture
such as the F-16 MMC, or a signal processing type architecture such as the F-22 CIP. Reference

Figure 5.

15

i kit i
.o
£

e

-eﬂg

LA it M i i A 44 ¥

PI-BUS

TM-BUS
M| |p
1 D E fo) R
ST t]{ollo]]s]||s|]s|]|o
Of | E riielleltelirtPl|w
R||R o "
Y R
TR ST L seaus
preus 0 leeesTeeeled
(@) (b)

Legend
I/O - Input/Output Module (e.g. 1553B, High Speed Data Bus)

DP - Data Processor (e.g. CAP16 or CAP32)

SP - Signal Processor (e.g. Fixed/Floating Point Processing Elements)
PI-BUS - Parallel Intermodule Bus

TM-BUS - Test and Maintenance Bus

SP-BUS - Signal Processing Bus

Figure 5. The CAB III Computer Architecture Types
(a) Data Processor and (b) Signal Processor

The hardware consists of both the modules required to build each system and the external and
internal box interfaces. Data processing, signal processing, communications security processing,
dispiay processing, memory, interface, and power supply modules are specified and conform to
the physical and electrical requirements for each architecture. External interfaces are defined for
transfer of system control and status information, sensor information, video information, and
weapons information. Intemnal interfaces are defined for transfer of information between modules
(i.e. the Parallel Intermodule Bus - PI-Bus) and test and maintenance information (i.e the
Test/Maintenance Bus - TM-Bus). A lot of ime and money have gone into defining the standards
and developing bus chip sets and module sets based on these standards. As a consequence, they
should not be ignored when implementing a svstem based on common modules.

Areas of Concern:

The choice of an standards other than those already developed can have severe repercussions for
the customer interested in developing modular avionics systems from existing common modules.
A case in point is the Navy's decision to use Futurebus+ instead of the PI-Bus. Although other
bus alternatives exist which outperform the PI-Bus, the choice of an intermodule bus standard
must consider not only perfermance but also cost and the industrial base already in place with
modules already based on the PI-Bus standard. The cost of developing new bus chip sets and
lining up suppliers to develop modules based on a new bus standard will be high. Also, faster
versions of the PI-Bus have been developed for use on the F-22 production aircraft.

16

Suggestions for Interchangeable Modulcs Standards:

As a suggestion for choosing common module standards, the CAB IIi hardware specifications
provide a starting point. If they are followed for the retrofit of existing aircraft, the necessary
investments in time and effort will have already been made. The standard has already been
defined. Bus chip sets have been developed. Module sets based on these standards are becoming
available. Furthermore, a later version of CAB specifications will be used for future aircraft. It is
further suggested that the Navy rethink its decision to mandate the Futurebus+ standard as an
alternative to PI-Bus until Futurebus+ chip sets and common modules nave been developed and are
available for the Navy avionics environment.

I.A.3. APPLICATIONS PROGRAMMING INTERFACE STANDARDS

In addition to defining the hardware standards, the CAB III specification also defines the standards
for software development. For software, standards can be defined for the following: the software
engineering environment (SEE), the higher order language (HOL), the run-time system (RTS), the
instruction set architecture (ISA), and the operating system (OS). Descriptions of these software
components follow.

A SEE is a set of tools used for developing applications software. The SEE consists of both
hardware and software tools. The hardware tools are things such as computer workstations and
processor emulators on which the applications software will be developed and tested. The
software tools execute on the computer workstations and provide the mechanism for design,
development, and management of the applications software. Reference Figure 6 on the following

page.

17

SEE HARDWARE

G

s

Processor Emulator

or
Prototype System
Computer Workstation (VAX)
SEE SOFTWARE
B aemmmemmns
CLEAR SCREEN CALLCLEAR ALOOP 0100 0111
CLRXY 11100101
LOCP A 0000 1000
A=BeC STOREB STOREB 0100 1111
ADOC ADDC 0011 1000
STORE A STOREA 0100 1000
PRINTA CALLPRNT LOAD A 1001 1100
ord STR AOFFSET 1100 0001
HOL (Ada) Ada Compiler Ada Comgiler Machine Code
- Language Parser 1st Pass 2nd Pass
- Editor Converts HOL Links to Runtime Lib
- Debugger instructions to mactine for code for uniqu
- Compiler code system calls
Application H
Task #1 A
L
= T
77—
77 | Operating System Pracessor ISA
’ - Schedules Tasks (n.e.' 1960/R3000)
- Handles Task Comm. geterr::g:;the ';‘;‘_:nh °
code sy or a
2\ . -
P o—" = N R instruction.
u
N

Application

Task #2

Figure 6. The Components of an SEE

18

A HOL is a series of commands, data structures, and methodology for developing software. The
HOL includes a compiler for taking the commands (source code) and producing code to run on the
target computer processor (object code). The HOL mandated for the development of new software
for the Department of Defense (DoD) is Ada.

The RTS is a set of software libraries, provided by the compiler supplier, that allow the
programmer to access machine specific resources. Examples of these resources are routines for
reading and writing to files and storage devices; rouunes for reading input devices such as a
keyboard or mouse; routines for graphics such as clearing the display screen and drawing lines;
and system specific function calls such as accessing ihe time of day or date. The RTS is linked
with the object code at the final stage of the compilation process.

The ISA is a lower level set of commands that the target computer processor executes. These
commands are simpler than those specified in the HOL. Whereas the HOL may provide an
addition operation such as A =B + C, the ISA would receive a series of commands generated by
the compiler for this operation that would assign memory in the target processor for storage of the
variables A, B, and C; would perform the addition operation by a series of target processor specific
instructions; and would store the result in a memory location for use by the program. The
instructions that the ISA executes are usually referred to as machine language.

The OS provides coordination and resources for the execution of applications software. The OS
provides the resources for determining when an applications program should be executed;
coordinates the communications between applications programs; and (in the avionics environment)
supports the reconciliation of tactical information in hard real-time.

Areas of Concemn:

Under the CAB I1I specification, the JJAWG specified the SEE and the ISA. The HOL was
already specified as Ada by the DoD. The choice of the SEE has both advantages and
disadvantages. The SEE chosen by the JIAWG uses Digital Equipment Corporation (DEC) VAX
computer workstations. This is a good choice because of the wealth of support tools that interface
with this platform and the Ada software development tools that can be run on this platform. The
problem with this choice is that the customer is limited to equipment produced by DEC, thus
providing DEC with a monopoly on the SEE for Ada software development.

The choice of an ISA also has advantages and disadvantages. The advantage of a standard ISA is
that the customer is provided with an upgrade path for newer versions of processors based on the
same ISA. The problems with choosing the ISA are again that the supplier has a monopoly on the
chip design tying the customer to a single supplier for the processor (unless of course you pay the
supplier enough money to license their designs to other companies) and the fact that this constrains
the upgrade path to faster processors made (or licensed) only by that supplier. If the supplier
decides to stop producing processors based on the ISA or (as a worst case scenario) goes out of
business, the customer no longer has support for his products or an upgrade path to faster ISA
Processors.

Suggestions:

Suggestions for defining the software development environment are as follows:
(a) do not specify the type of SEE but specify
contractor's responsibility to provide one in the
context of a program and specify customer's SEE
validation responsibility;
(b) comply with the DoD mandated Ada programming
language standard;

19

7 T

(c) do not specify the ISA, but instead specify the
interface between the HOL and the RTS (more on this
below); and

(d) use the operating system provided by the supplier
instead of developing your own OS since the OS is
integrally tied to the hardware.

The HOL-to-RTS interface involves the definition of standard subprogram calls to be added to the
HOL. As stated previously, these calls execute routines for reading and writing to files and storage
devices, routines for reading input devices such as a keyboard or mouse, routines for graphics
such as clearing the display screen and drawing lines, and system specific function calls such as
accessing the time of day or date.

For defining this interface standard, the format and options for the commands would be
standardized. The supplier of the HOL compiler would implement these subprogram calls as
standard program statements and would provide the portion of the RTS that was not ISA specific.

The supplier of the processor would rewrite the processor specific RTS to be compatible with the
standard.

By standardizing the HOL to RTS interface, a number of advantages can be gained. First, Ada
code can be machine independent; thus the same software written for an Intel 960 based data
processing module can be recompiled and run on a MIPS R3000 based data processing module
with either little or no software recoding required. The reason little or no software recoding is
required because timing differences between the two processors may require only slight code
modifications. And second, no single company has a monopoly on the processor ISA, so the
customer can take advantage of competition between suppliers to produce faster, lower-cost
processors.

In summary, the decision of what SEE's, ISAs, compilers, and operating systems to use for
development of military avionics software should be an industrial competitive decision. It should
be a program decision and not mandated by government agencies. To choose any course of action
would limit the amount of competition and possibly provide a company with a monopoly on a
critical component. However, before a SEE and its sets of hardware and software support tools
are used for a given program, they should be validated by the contracting agency.

II.B RELIABILITY

Re%(i:bility and maintainability responsibilities include the effort required to perform the following
tasks:

@) Influencing the design of an avionics system so
that it is easily maintained and, through the early
use of analytical techniques, identifying as well
as correcting all marginal design decisions which
may have compromised its reliability;

(b) Uncovering potential maintenance problems and
initiating corrective actions within a program to
modify designs, specifications, and/or
disassembly/assembly procedures which may
compromise subsequent reliability;

(c) Performing risk reduction analyses with appropriate
demonstrations which concentrate on unit
reliability and module packaging within each
system; and

20

‘

(d) Collecting as well as documenting maintenance data
from an active hardware/software testing standpoint
(e.g., qualification, reliability, burn-in,
simulation and acceptance) with the active support
of analytical procedures.

IL.B.1. TWO-LEVEL MAINTENANCE DESIGN CONCEPT

Maintainability for reliability purposes often features a two-level maintenance concept which
includes the following activities:
@) Built-in test (BIT) and autonomous self test (AST)
which provide fault detection/isolation to a line
replaceable module (LRM);
(b) a LRM design that allows handling, shipping, and
repair without inducing failures; and
© sufficiently high reliability and low module costs
that favors investment in spares rather than more
expensive costs for intermediate maintenance
facilities and personnel.
After detailed design and pricing, a level of repair analysis will always show that two-level
maintenance is the most cost-effective maintenance concept.

I1.B.2. AVIONICS RELIABILITY AND FUTUREBUS+

Futurebus+ is a wide parallel, high bandwidth, 2 volt collector bus. The Futurebus+ architecture
resembles a memory bus where different computer components such as the processor and
processor memory reside on separate modules. Avionics systems require a high level of packaging
integration and functional density where volume and weight are critical considerations. For
avionics, multiple modules communicate with each other using bus structures that resemble a local
area network. Futurebus+ provides parity on data, address, and on some control lines. The
Futurebus+ interface implementation requires over 200,000 gates, approximately 12 transceivers,
and 96 to 348 active signals per module depending on the width of the data field (i.e., 32, 64, 128,
or 256 bits). Currently, Futurebus+ does not provide fault tolerance, and to add fault tolerance
would require additional active signals and corresponding connector pins. A dual 32-bit
Futurebus+ implementation uses approximately 192 signals. A single 32-bit implementation with
Error Detection and Correction would use approximately 171 signals.

Futurebus+ needs more analysis before application to avionics is possible. Some issues which
need to be considered include fault tolerance, functional density, and validation and interoperability
tests. Although Futurebus+ carries parity on data, address, and some control lines, other
important signals are not parity protected. In addition, there are faults of state sequencing and
synchroni_ation that are not detected and that can result in misleading communication.

II.C. RECONFIGURABILITY

In this section our discussion will be focused on mission critical locally distributed real-time
systems. A further assumption is that the system is comprised of several types

of processors (signal, general purpose, etc) interconnected by one or more local area networks and
that theoretically software processes designed for a given processor type can be mapped to any
processor of that type in the system. While the ability to map a process to any processor of the
appropriate type in real-time is a highly desirable goal from a system availability perspective, it will
only be possible in mission critical real-time systems if it can be proven in advance that the new
mapping of processes to processors will satisfy all of the system critical timing requirements. Ina

21

distributed sysiem of even moderate complexity the number of possible combinations or mappings
of processes to processors becomes astronomical very quickly.

The basic objective of a mission critical system's reconfiguration policy should be to keep alive the
most critical system functions for a particular mission and mission phase. This means that we need
to be able to load shed the least critical functions and the software that supports them so that those
processing and local area communication resources are available to support whatever are the most
critical functions at that particular time. This policy will result in the highest system availability
and, therefore, the highest likelihood of mission success.

Typically, in current real-time mission critical systems, we treat all of the processes in a processor
as a single process for reconfiguration purposes, i.e., we reconfigure on processor load
boundaries. This results in binding software supported functions together which are both mission
critical and non-critical. As was previously mentioned, criticality is dependent on mission and
mission phase; therefore, functional criticality varies over time and it is not possible except in
simple systems to cluster software processes together in a fixed manner based on descending
criticality. Even if it were possible, it is probably not a good system availability/survivability
strategy to put all of the most critical functional process eggs into one (or a few) processor
basket(s). It makes more sense to reduce system vulnerability to processor failure by mapping
different critical functions to different processors. So why do we typically reconfigure on
processor load boundaries, if that is suboptimum? The answer lies in system testing and
certification. Typically, we individually test every reconfiguration option (mapping of processes to
processors) into which we will allow the system to reconfigure. How else can we prove that all of
the critical system timing requirements will be met? We have not had algorithms (until recently)
that will allow us to make that determination on-line and in real-time, let alone, to use as system
engineering tools for designing the system in the first place except for cyclic scheduler based
systems.

The cyclic scheduler approach is an ad hoc heuristic approach that fortunately works, but it
produces brittle system architectures that become more and more difficult to upgrade

and which do not scale well to more complex system architectures where critical system timings
must be guaranteed across multiple local area bus domains.

Basically, the cyclic scheduler approach divides resource (CPU, LAN) time up into fixed slots and
allocates them individually to specific processes/functions. A good mental model for this type of
architecture is a mechanical clock with its gears and cogs. Everything must mesh together;
therefore, this architecture does not like asynchronous events, and it does not like periodic
processing streams that are not harmonic. The engineering challenge is to pound the system
problem into this solution. To reconfigure in this type of architecture a new mapping of processes
and messages to LAN and CPU time slots must be developed either in real-time or off-line and
used as a predetermined reconfiguration option. The later approach tends to be the one used as it
can be pretested and certified to work.

A better system resource (CPU, LAN, etc.) time management technique must be developed and
used if we are to take full advantage of distributed system reconfiguration/availability

potential. We must also develop trust in real-time reconfiguration algorithms and certify the
algorithms rather than each reconfiguration option the system is allowed to operate in if we are to
realize the full system availability benefits inherent in future distributed real-time mission critical
systems.

22

I.C.1. FEDERATED VERSUS DISTRIBUTED CONTROL

The ability to reconfigure locally distributed processing and networking assets of a system depends
on several high-level system resource management functions that need to be present to some degree
in any distributed real-time reconfigurable systems.

These system level resource management services include
(@ Reconfiguration Management which orchestrates
system reconfigurations,
(b) Initial Program Load which oversees the start-up of
individual processors,
(c) Status Monitoring for individual system processing
and networking assets, and
(d) Status Keeping and reporting.
A fifth system resource management service, Fault Localization, is associated with isolating and
repairing system assets and returning them to service.

With the possible exception of Fault Localization all of the other system resource management
functions are generally involved in the real-time reconfiguration of a system. Status Monitoring
provides the information with respect to what reconfigurable (hopefully) system asset has failed;
Status Keeping lets us know where a possible spare resource may be and, if there is no spare,
where a less critical function may reside that could be sacrificed to free up a reconfigurable asset
for a more critical function, the Initial Program Load function can then be invoked to get the right
set of functionality mapped onto the system resource being reconfigured.

In order to address the issue of "Federated” versus "Distributed" control of reconfiguration (and of
the system at large) we must first define what these terms imply and that is the first problem
because these terms mean different things to different people. The term "Federated" really relates
to how a distributed processing system should be governed or govern itself. Hence, we are
entering the realm of processor system political science. The forms of human government do
provide a legitimate model for discussing the forms of government for computer systems (and
there had better be a consistent form of government in a complex system or there will be chaos).
We will, therefore, define "Federation" in that context as it is the only one that is meaningful. A
federation is a form of government wherein the individual entities surrender their sovereignty to a
central authority while retaining limited residual powers of government. This maps well to many
real-time distributed systems in existence today; the processors have their own operating systems
for local control and the system management functions are implemented as a central authority
applications on one or more of the processors. (Often these central authority system management
applications are replicated for reasons of system reliability/availability.) In a larger context, we
often see tiered federated systems where each subsystem is a federation. More often, we see
confederations; groups of systems or subsystems which have agreed to cooperate to achieve a

common purpose but which have not surrendered any sovereignty with respect to overall system
management.

The term "Distributed,"” as it applies to processing system control or government is extremely
ambiguous. Everyone knows what it means and all the definitions are different. Furthermore, the
definitions change over time. "Distributed" is really not a form of government (unless anarchy, no
government, is implied). What is generally meant by "distributed" is "how" a common and
consistent set of central governmental resource control/management policies are to be implemented
in a locally distributed system environment. "Policies” are defined as "the high level overall plans
embracing the general goals and acceptable procedures, especially, of a governmental body.” Will
they be embodied in a centralized set of processes in a few processors or will they be "distributed"

23

across many or all processors, but in either case, no matter the degree of distribution, the basic
system reconfiguration management policy should be invariant.

Henceforth, in this section, "federated" will be used to define an implementation approach for
carrying out a set of system resource reconfiguration management policies wherein the implementer
or director of those policies is a centralized entity in the system with a backup each of which is
resident on separate processors. "Distributed” will be used to define an implementation approach
for carrying out the same set of system reconfiguration management policies wherein the
implementers of those policies is a cooperatmg set of processes (perhaps one in each system
processor) distributed across the system'’s communication network.

A further assumption is that we are addressing systems which have stringent timing requirements
and hard deadlines and which have to go through a stringent set of system certification/acceptance
tests involving proof that the systems real-time response requirements will be met by the system
design both before and after system reconfigurations. It is also assumed that future major system
upgrades will be subjected to the same set of system certification/acceptance tests. If system timing
is not of key concern, then the system implementers should choose whichever reconfiguration
control approach (dlstnbuted or federated) yields the lowest cost and is consistent with other
system design goals/requirements.

If system timing is a key concern, then there are three issues with which we must deal in
establishing a new system reconfiguration:

1) Is there a viable system reconfiguration option
(mapping of processes onto processors, e.g.) by
which all of the systems functionality may be
supported or, if not, what reconfiguration option
supports those functions which are most critical to
the current mission phase,

2) How much disturbance will the reconfiguration cause
to ongoing processing not directly associated with
the event (failure or system mode change) that is
causing the need for reconfiguration, and

3) What will the systems vulnerability be to the next
failure assuming no repair of currently failed
system assets.

In a system with critical timing requirements, none of the above issues can be dealt with unless
there is a way to predict at what levels of processor and communication resource utilization timing
failures will begin to occur. A reconfiguration option is not valid if critical timing requirements
will not be met. If viable reconfiguration options can be determined, they can be examined to find
the one with least disturbance, or the one which will yield the least vulnerability to critical functions
when the next reconfiguration is required due to a hardware failure. Note that the reconfiguration
option that provides the least disturbance may also be the one that provides the greatest
vulnerability to the next failure. If the system is not in a critical mission phase it may be better to
accept more reconfiguration disturbance to reduce future vulnerability. Conversely, if the system is
in a critical mission phase it may be better to minimize disturbance and accept more vulnerability.
Operator inputs are the best way to resolve this inherent conflict.

As was previously mentioned, the number of reconfiguration options, or possible mappings of
processes to processors can become astronomically large very quickly in a distributed
environment. From a critical function availability perspective that is just what we want,
unfortunately, there remains the practical question of how we test all of those options or prove that
they will not fail to meet timing requirements. We simply cannot afford to test them all; therefore,
our system time management science must allow us to prove that they will be viable

24

reconfiguration options. Fundamentally, there are two approaches: one old and a newer one still in
the process of being developed. The old approach is the cyclic scheduler approach discussed
above where the processor or bus resource is time slotted and the slots are pre-allocated. A new
allocation can be determined in real-time, but that allocation will remain in effect until a new one is
made. Many systems have been built using this approach, but as indicated above it does not scale
well to more complex distributed systems.

The new approach based on rate or deadline monotonic scheduling seeks to use closed form
mathematical equations to determine reconfiguration feasibility and it does promise to scale well to
more complex distributed systems given that the resource managers in those systems adhere to its
principals. Unfortunately, the problem is not completely solved for the distributed case today;
however, it continues to provide the best hope for being able to analytically determine whether
complex distributed systems will meet their timing requirements. There are many preemptive
priority systems fielded today which conform closely to rate monotonic principals that attest to the
effectiveness of the technique.

The current rate monotonic scheduling research at Carnegie Mellon University and the Software
Engineering Institute has its basis in the search for real-time reconfiguration technique for
reconfiguring the processing and local area networking assets for the AN/BSY-1 Submarine
Combat System. The technique was used successfully in the AN/BSY-1 system to determine
feasible reconfiguration options for multiple processors across three interconnected local area
network domains. The rate monotonic scheduling technique is supported by the processing and
network resource managers and the ability to analytically find reconfiguration options with
resource utilization approaching 90% while still meeting timing requirements works in the
AN/BSY-1 Combat System. What is missing today is the generalized set of equations for the fully
distributed case. Dr. John Lehoczky at Camegie Mellon University is continuing his research to
extend the uniprocessor results/equations to this area. Early results are available.

With the desire to leverage future commercial technology to reduce the hardware and software
costs associated with future mission critical systems where possible, it is important to influence the
standards and, thereby, the commercial designs such that they provide support the type of system
resource management needed, time driven resource management, to attain the responsiveness and
system timing predictability required by real-time distributed mission critical systems. The Ada
and Futurebus+ standards have moved to support the rate monotonic scheduling approach and
POSIX appears to be moving in that direction. The Software Engineering Institute working with
the NGCR program and with industry support has been very effective in making this happen.

The answer as to whether reconfiguration management should be exercised from a federated
(centralized) context or from a distributed context depends to a large degree on the

complexity of the system. Effectively and efficiently implementing a "distributed” system
management scheme for complex distributed systems is far more difficult than a "federated"
approach. Therefore, the natural progression should be to solve the management problem first
using a federated approach for implementing the overall reconfiguration management policies.
When that is successful, a distributed approach should be investigated.

It would seem that there is an inherent underlying assumption that the distributed reconfiguration
control approach will provide some additional benefit that will justify the additional complexity and
significantly greater system overhead that will surely ensue. ~ That assumption is probably not
justified from a system availability analysis perspective except for extreme cases where system
availability in excess of .999 999 is required, if then. A federated resource manager can be
resurrected again and again and again, down to the last remaining processor. That is a matter of
system design. A distributed technique is needed to decide where to instantiate the federated
reconfiguration manager and to assure that there is one and only one reconfiguration manager if it
is to be capable of being resurrected on any arbitrary processor node in the system.

25

I1.C.2. PRIORITIZATION REQUIREMENTS

If one accepts that rate monotonic scheduling techniques are also essential to support complex
distributed system reconfiguration then the need for priorities as a means of implementing
precedence requirements also follows. (Note that rate monotonic scheduling requires a means for
eliminating unbounded resource blocking and for controlling work precedence. Preemption and
priority are techniques that are used to satisfy those requirements, but they are not the only
possibilities.) Given that priorities are the chosen mechanism for implementing rate monotonic
scheduling in Ada and in Futurebus-+ it is reasonable to assume that other technologies will utilize
that technique as well.

The next question that arises then is "How many priority levels are enough?" Studies at Carnegie
Mellon University have shown that for the general case a range of priorities from 64 to 256 levels
is appropriate. 256 levels is approaching the ideal. The fewer the number of priority bins the
more work with disparate timing requirements that gets forced into the same priority bin. Since the
system is unable to distinguish between actual response time requirements within the same priority
level, the utilization level at which system timing failures will occur will be less than if 256 levels
were used. This means that we will not be able to get as much use out of our processing and
communication hardware as would otherwise be the case. That translates to greater system cost,
weight, volume, spares, etc. because we will have to have more processing and communication
hardware assets to support the same required level of system performance, reconfigurability,
availability, and survivability. Because we are focusing our future architectural solutions on
standardized approaches, this cost will be paid many times over by the Department of Defense and
the U.S. Navy if the standards do not support an adequate number of priority levels.

I.LD. SCALEABILITY

The ability to increase the capacity of an architecture without requiring architectural changes is
called "scaleability.” When the architecture is distributed, its capacity is increased by adding tc
existing hardware and not replacing it. The application software remains unchanged while
Operating System primitives manage the increased load. Upgrades are simple and fast. In effect,
scaleability allows a system to grow beyond its original specifications. However, such growth
does not occur without affecting performance response characteristics. Such characteristics, in
turn, depend on the I/O bandwidth of the distributed architecture's backplane or the Local Area
Network to which its hardware modules are attached. As a consequence, the I/O bandwidth of the
backplane often constrains subsequent scaleability. Without belaboring the hardware implications,
the following observations will concentrate on software. In particular, “scaleability” will be
considered from the standpoint of software re-use.

The scheduling of real-time applications in an avionics architecture has become more difficult as the
applications themselves have become more complex. Techniques of task sequencing have changed
from simple cyclic scheduling (where the list of activities is executed in a rigorously defined
predetermined order) to much more complex algorithms (where the order of execution changes
according to a set of rules). As the orders of execution change, reusable software becomes more
difficult to design and implement. Such software must be articulated at several points within the
software lifecycle (e.g., the requirements phase, the design phase, and the coding phase). Itis not
something that just happens. It requires concerted effort by all levels in a developmental effort.
From an avionics standpoint, some of the most significant requirements conflict with the writing of
reusable code. Those requirements are addressed under the following topics.

26

LI T ATy A L e kil MU IR L W L i T VL (UL b " i i

Control of Interrupts:

This requirement results from real-time avionics systems having to enable and disable hardware
interupts and to minimize interrupt handling latency. The facilities of a development language
(e.g., Ada) do not explicitly support such latency-handling mechanisms. Therefore, avionics
software becomes dependent on its underlying avionics architecture.

Control of Scheduling:

The requirement for explicit control over the scheduling and despatching regime in the avionics
environment is absolutely necessary. Additionally, core avionics relies on precise and constantly
predictable processing to implement the most appropriate priority scheduling of the existing
avionics architecture. Since development languages (e.g., Ada) legislate against dependence on
scheduling and processing priorities, avionics applications must once again depend on their
underlying avionics architectures.

Critical Sections:

The requirement by embedded avionics systems to safeguard their non-interrupted execution of
critical code (e.g., the digital flight control system) is essential when the code is time-sensitive.
Therefore, completion of execution without interruption or preemption must be guaranteed for
logically consistent execution. The development language (e.g., Ada) does not support this class
of guaranteed execution and forces avionics applications to depend on their target architectures.

Cyclic Execution:

Concurrently-executing independent avionics systems depend on cyclic execution. The avionics
packages are scheduled in a foreground-background environment and execute on a rigorously
defined periodic basis. Suspension of tasks and preemption of lower priority programs is
necessary to ensure fail-safe execution of avionics applications. In some instances, the priorities
across several avionics applications might change. Because development languages like Ada avoid
stipulating specifics regarding multiple program execution, cyclic execution within an avionics
application may become dependent on a particular implementation and would therefore change
when reused in other implementations.

Distributed Processing:

This requirement is often required in embedded avionics systems which offer a high degree of
reliability and resiliency to system malfunctions. Decentralizing the system architecture increases
the fault tolerance of the avionics architecture. In addition, many avionics applications are built
with distribution of processing as a design criterion in order to enhance their application
extensibility. However, this distribution is specific to particular system architectures which may
themselves compromise code reusability.

Predictable Timing:

This requirement occurs in real-time avionics systems when a task must execute within a maximum
elapsed time or distance (e.g., one second or 2,000 feet). Task initiation and completion must be
accomplished within that time or distance. No development language guarantees such bounds with
respect to time and distance parameters. Ironically, once realized in one avionics architecture, the
same code may operate too slowly in another architecture. The configurations on one aircraft will
vary greatly from the configurations on another aircraft and, thereby, make predictable timing very
difficult to achieve across multiple aircraft.

27

Pre-Elaboration:

The requirement to minimize elaboration overhead at run-time is essential in embedded avionics
systems which have specialized power-up and restart constraints. Typically, such applications
attempt to demote run-time elaboration to compile-time processing by "code-staticizing" so that pre-
elaboration is possible. The degree to which this can be supported is target dependent and is not at
all conducive to code reusability.

Storage Control:

This requirement occurs in physically small embedded systems like avionics where storage
capacity is a limited resource. In such systems, the applications software must maintain precise
control over the allocation and reclamation of storage resources. In the case of overlapping
information stored in two places, the reconciliation process itself becomes a predictable timing
problem. As already observed, development languages do not support predictable timing
problems. Neither do they support storage control problems. Therefore, storage-critical code fails
to be reused in different execution environments because of dissimilar storage allocation and
reclamation techniques as well as wildly varying reconciliation techniques.

In summary, any software system should be optimally reusable in the following sense. An
arbitrary part from such a system could be lifted intact and used for the same purpose in a totally
different system. As an example, optimal reusability would ensure that the ground-to-air fire
control program for an M-1 tank could be used as the air-to-ground fire control program for an
RAH-66 helicopter whose job it is to eliminate tanks. Unfortunately, optimal reusability is not
attainable for a number of reasons. First, a particular part may have a dependency on other parts in
the program which precludes its use in a different program without those additional parts. Second,
a particular part may have a dependency on an operating system primitive which would no longer
be present under a different operating system. Third, a particular part may have a dependency on a
particular scheduling policy which would not transfer to another system unless the same
scheduling policy were present. Before reusability is realized, much work remains to be done
concerning software commonality and modularity.

ILE. EXTENSIBILITY

Extensibility is the ability to enbance capabilities of a system without invalidating existing
application software. Present methodology in software deployment relies on strict process control
to insure system integrity. The concept of modularity as it relates to extensibility is based on
support benefits and maintenance reductions centered on the introduction of smaller line
replaceable modules or LRMs. These LRMs are equipped with their own on-board diagnostic
software which in some cases implies the type of application software which the LRM can execute.
Any software release or LRM replacement which increases aircraft capability and performance
must contain an upgrade path using existing hardware. In other words, the system must have a
high degree of extensibility. A measure of extensibility is number of fielded maintenance actions
due to software incompatibilities. Currently, these parameters are neither measured or traced in
deployed systems.

ILE.1. EXTENSIBILITY CONCEPTS

JIAWG efforts have addressed issues of standardization including the software programming
language, the operating system, the instruction set architecture, hardware interfaces and the
software engineering environment. Many of the CAB III standards are interrelated to form a
complete set of standards for development of an modular avionic system. This form of extensive
standardization may not provide the optimum solution to build a cost effective avionic suite for the
target aircraft unless all of the JIAWG standards are implemented. Through the NGCR activities,

28

standardization has focussed on interfaces between avionic components. With the JJIAWG
approach, specification of a specific SEE, operating system or ISA could impose a competition
problem or monopolize the avionic development of hardware LRMs and their corresponding
operating systems.

There are standardization alternatives to keep extensibility high, while providing significant
improvements in the avionic support and maintenance. A supplier base can be preserved with a
strong standardization effort for future LRMs. By establishing interface standards between the
application code and the avionic operating system, high extensibility is possible without the need to
standardize on a specific instruction set, operating system, or Ada run-time support package.
Current JJAWG standards are targeted toward the F-22 or LH aircraft and are subject to technology
obsolescence when new generations of integrated circuits are developed. These fourth generation
systems will include different partitioning options, ISAs, and other embedded features. Larger and
more accurate software models will use most of throughput gains to increase aircraft accuracy and
capability. Through development of an Application Interface Standard, different ISA should be
selected and supported. This would not achieve the interoperability goals but interchangeability
between aircraft system software could be achieved. Proper software interface standardization and
management would allow each aircraft to manufacture to their unique hardware requirements.
Standardization of the interface between the aircraft support electronics and the backplane could
provide an opportunity for the Navy to replace entire backplanes creating interface compatibility
with future processing systems. Combined, the Application Interface Standard and a removable
backplane standard would allow an upgrade path to new processing technologies without
redevelopment of existing application software, reducing overall weapon system development
costs.

An analogy of this abstract concept is seen in the commercial PC market. The software package
"Windows" serves as the interface between machine, the human, and the application code which
runs on a specific ISA family. Standardization of the application software interface provides the
capability of running PC software on diverse PC platforms. The Navy standards should include a
similar software interface standard, above and beyond the JIAWG standards. Standardization of
power, cooling, and physical size properties of the avionic enclosures provide the final link in
developing a scaleable system architecture. The final avionic design suite would be independent of
the processing architectures or future technologies under development. To determine the
effectiveness of an Application Interface Standard, trade studies are required to examine
implementation of this standard over the life cycle of an aircraft verses no standards imposed on the
aircraft at all.

New Aircraft Avionic Starts: A-X Relationships

New forms of standardization provide an upgrade path for hardware without impacting existing
software until capability improvements in software and hardware can be gracefully introduced into
the overall avionic system. Emphasis should be placed on standardization of the weapon system
architecture for the aircraft, leaving hooks for future and for new processing architectures. This
implies tight control of electronic and physical signal interfaces of the planned processing
architecture. Expected IOC dates for the AX system, based on Navy reports and defense
appropriation estimates, clearly indicate that the CAB V specification is the likely JIJAWG standard
of interest for the AX avionic suite. Navy involvement in the CAB V standardization effort would
have significant return on investment, influencing interface specifications as required for use on the
AX.

II.E.2. OPPORTUNITIES FOR COMMONALITY AND MODULARITY

A wide range of opportunities for commonality and modularity is open both for system upgrades
and new weapon system programs. Past commonality and modularity efforts have been very

29

limited in both their scope and objectives. These efforts have often yielded beneficial results, but
their price has been high and their gains have been considerably less than desired. However, their
beneficial results should encourage future commonality and modularity efforts. The good and bad
experiences from past programs can be used to guide future programs. The following discussion
outlines commonality and modularity opportunities; suggests possible objectives, types and levels
of standardization; and recommends necessary considerations for successful commonality and
modularity efforts. The discussion uses observations made on past commonality and modularity
initiatives as well as major weapon system development programs.

Commonality and Modularity Relationship:

Commonality and modularity are closely related. If any widespread degree of commonality is to be
achieved, it is absolutely essential that a high degree of modularity be achieved in both systems
hardware and software. Modularity is essential because "one size fits all" situations are rare with
avionics systems. The Air Force DAIS architecture is one notable example of a large-scale
standard that did not fit all cases. It simply did not physically fit well into the relatively small F-16
aircraft. Consequently, the F-16 program was only able to implement a design based upon the
DAIS system rather than the DAIS standard. In view of such experience, a primary objective of a
successful commonality and modularity effort must be selection of practical levels of modularity
that will allow the widest possible application of common (standard) hardware and software
modules within the same system and across different systems. Standards must be adopted for
hardware and software module functions and interfaces to facilitate this objective in a practical
manner that fully accommodates performance, technology, procurement, and even political
requirements.

Standards Must Have Broad Appeal for Success:

Commonality and modularity standards cannot be imposed on programs unless they make real
sense in terms of economics, schedule, and performance to program managers. Any advantages
must be clearly beneficial to all concerned or the effort will be doomed to failure. For any standard
attemnpted, there will usually be customer and/or contractor elements with several overriding
reasons why it cannot be implemented. Without clear and significant benefits, these customer
and/or contractor elements will usually prevail, thereby destroying or seriously compromising the
desired commonality and modularity. Attempts by the Air Force Pave Pillar Program and the
subsequent Joint Integrated Avionics Working Group (i.e., JIAWG) standards effort are primary
examples of this type of situation. Sufficient "overpowering" reasons to deviate from the
standards were raised by enough users to reduce much of the end product to little more than lip
service. The resulting JIAWG modules were similar but far from standard or common between
users. In the case of JIAWG, the standardization benefits have not been sufficient to overcome the
"overpowering" reasons to deviate from its standards.

Standards Development Efficiency Required:

An efficient approach to developing standards and modularity is essential to timely standards
definition. The JIJAWG effort which has been on-going for the past several years is having great
difficulty defining a complete and final set of standards. The large, IAWG-type committee
process is too slow and cumbersome. The objectives of its committee members are so diverse that
progress toward consensus is in danger of being lapped by technology advances. A future
commonality and modularity program needs to establish a standards definition process involving a
small number of decision makers who are able to determine real military/industrial requirements
and to efficiently sort important requirements into either like-to-have, organization-unique, or
product marketing categories. One possible approach would be to select a single standards
development or integration contractor that would agree to opt out of any future standards product
marketing. Such an approach would hold some risk for failing to consider all inputs with equal

30

(e A s A A

o B

b it LA A A R L L s R R

e

o i LA s T L A U
i ki T ikl i At i g i

weight, however, it would enable definition of standards in a sufficiently short time to allow their
use in real programs.

Standards Timing is Critical to Implementation:

The timing of any commonality and modularity effort with respect to target weapon system
programs is critical to the success of the initiative. A standardization program that does not
complete its definitions in advance of new weapon system program starts is in danger of being
ineffective. Real program schedules and firm contractor commitments to other program
requirements (including cost) will almost always cause program managers to avoid undefined or
unproven standards or basic system elements. Program managers of major weapon system
programs normally abhor significant amounts of research and development concerning standards
because its associated cost and schedule risks can easily destroy their programs. In view of this
situation, a separate (in advance of need definition) development and test program for proposed
new standards is mandatory for the success of subsequent commmonality and modularity efforts.

Competition Protection Is Necessary:

Potential for market restrictions must be avoided under federal laws governing U.S. Government
procurement. Thus, commonality and modularity activities cannot be allowed to obstruct open
competition. This limitation precludes selection of any particular supplier item as a standard,
unless full provisions are made to allow open and fair competition by all possible suppliers. If a
particular system element such as a chip, instruction set, interface, or software item developed by a
particular supplier were selected as a standard under an open competition, a minimum of
unrestricted licensing rights, along with necessary technical data, to all potential suppliers would be
essential to comply with competitive rules. Even with the above steps, competition objections
could easily arise on the basis that the original supplier’s market and production status with regard
to the item would create an unfair advantage. In view of this difficult situation, this area presents a
major problem that must be solved to allow effective commonality and modularity.

Technology Advances Must be Accommodated:

Any commonality and modularity effort that fails to allow infusion of new technology is destined
for a short life span because of several powerful forces. Improved technology typically allows
performance and/or capability gains that are demanded by users. Furthermore, many avionics
technology gains result in reduced size and weight which are critical factors to aircraft designers
and program managers. Finally, it can be assumed that developers and suppliers of advanced
technology will insist that American industry and technological advances are being stifled unless
standards are transparent to technology.

The technology advancement problem is a critical consideration in the selection of a basic approach
to standards. In most cases, technology transparency objectives may well be the controlling factor
to the type of standard selected. Clearly, this factor, in combination with the previously discussed
competition situation, appears to rule out many hard selections of specific hardware items as
common use standards. Technology transparency and competition are issues that drive toward the
selection of interfaces and functionality being the primary standardization candidates.

Levels and Areas of Standardization:

The levels at which standardization is attempted and the range of commonality intended for such
standards are key to the probable success of commonality and modularity efforts. If the level of
standardization is too large, the "one size fits all" problem previously discussed with regard to the
Air Force DAIS program obstructs progress. On the other hand, standardization too narrowly
defined risks excessive interface definition and technology transparency problems which diminish

31

its value. Standardization of modules at a very low functional level tends to create almost
insurmountable interface definitions problems because of an excessive number of interfaces.
Furthermore, large numbers of interfaces can pose extreme levels of difficulty in failure isolation to
a replaceable module. The current JIAWG module standards with over 300 connector pins per
module are examples of the potential problem. In this case, the standards definition process has
proven difficult. Serious questions remain concerning fault isolation to the individual module
because of large numbers of interfaces not readily amenable to comprehensive BIT testing. The
fault isolation problems become especially worrisome for integrated rack installations that
necessitate isolation at the aircraft level.

Neither the same level of standardization nor the same types of standards are necessarily applicable
to all areas and categories of systems or system functions. A set of standards for high-speed signal
processing areas are probably not appropriate for most other less demanding system applications
such as display and system control functions. Hence, an attempt to define and impose a single set
of standards for all applications is likely to

(a) produce a standard that really suits no function or

(b) present such an expensive overkill for many functions

that it will not be used.

For example, the current JJAWG standards appear to be directed more toward processing intensive
functions. Consequently, there is little real probability of these standards being applied to the larger
segment of weapon system functions which simply do not warrant such power. As a
consequence, weapon system functions are thus excluded and are left with few commonality and
modularity choices.

Cost Issues are a Prime Consideration:

Several cost issues must be addressed as a part of a commonality and modularity definition effort.
Costs required for development, production, lifecycle maintenance, and upgrades of systems
should be carefully examined when selecting the objectives, levels, and ranges of standardization.
Because the commonality and modularity problem is fundamentally one of economics, minimizing
total cost must be one of the primary commonality and modularity considerations. Realistic cost
trade studies should be conducted to evaluate the relative total costs for a wide range of different
levels and types of standards for the full range of potential commonality and modularity
applications. The question should be what types are most attractive from the standpoint of cost
rather than accommodating commonality and modularity in the context of usual approaches which
presuppose the existence of the Soviet Union. The issues to be considered should include:
o Standards development & test cost
o Resulting system hardware and software development

costs
Support equipment hardware & software development
costs
Software development and test equipment costs
System production costs including start-up costs
Support equipment production costs
Support equipment installation, facility, &
maintenance costs
Spares costs for prime mission and support
equipment
o Personnel cost - All levels for prime and support

maintenance
o Repair or replacement costs for failed items
o Logistics chain and transportation costs - both

ways
o Likely system upgrade hardware & software cost

QOo0QOo (=]

Q

32

during life-time

One key consideration in selection cf standardization levels for hardware should be that of failed
common module repair or throw-away. This issue is of major importance as both
@) the number of functions placed in a single package
and
(b) thedifficulty of implementing assured repairs
increase.
Resulting reductions in support equipment at all levels and elimination of half of the logistics chain
offer potentially large cost savings for the throw-away approach.

Types of Standards:

A wide range of possibilities for types of standards exists. An important task for any commonality
and modularity effort is to select those types which offer the most significant payoffs. Basic
standards areas available for consideration are:
o Hardware Elements (System, LRU, Module, Backplane,
Component)
Instruction Set Architectures
Operating Systems (or Executives)
Programming Languages
Application Software Modules
Interfaces

Q000

Hardware standards above the component level are proven difficult to implement for several
reasons, including competition and technology changes over a very wide range of uses. Such
standards typically are effective only for a single system or program. Long term applications are
difficult to implement.

A class of virtual hardware standardization has been realized in some cases by standardization of
functions and interfaces for a hardware item, thus allowing different items of hardware from
different sources and different technologies to be used on an interchangeable basis. This type of
standardization really amounts to a class of interface standardization and is likely the most
realizable type of standard that can be implemented on a practical basis at a module level.

Standardization of computer instruction set architecture (ISA) such as that defined by MIL-STD-
1750 is necessary as a part of a processor "interface” standard if processors or processor modules
are to be produced by as standard use items or used on an interchangeable basis. Such
standardization is also probably necessary if standard application software modules are to be
developed and used. Unfortunately, this type of ISA standardization tends to impose some
difficult to accept restrictions in many applications and results in equipment that is major overkill
for other applications. Consequently, deviations from this standard are rather commonplace, thus
limiting its effectiveness. In addition, use of higher order languages with compilers able to
produce code for various different ISAs is tending to detract from some of the original reasons for
the standard ISA. In the case of the standard higher order programming languages, the important
and practical standard is the programmer interface standard.

Operating system standards, where applicable, have proved to be effective levels of standards.
This is especially the case when versions of the same operating system are available for a range of
different processors. In this case, the operating system to applications program interfaces are the
real and effective standards. (The actual operating systems are often quite different for different
machines.) Here again, the key to successful standardization has been interface standardization.

33

From the standpoint of program development cost, software module standardization to allow re-
use of software between programs is a highly attractive, but elusive and difficult objective.
Application software module standards have been difficult to realize primarily because of

(a) variation of interfaces between software modules,

(b) different ISAs, and

(c) timing interdependencies between different modules

sharing the same physical processing assets.

Strong commonality and modularity program emphasis should be directed toward finding a means
to standardize and re-use software modules.

The key to any successful standardization of software modules probably lies in development of
interface standards for software modules in much the same manner as standard operating system
interfaces now enable a degree of standardization. A second area of effort is the need to reduce
possible impacts of timing interdependencies between different software modules used in different
situations. The ultimate situation would be to provide a software applications module environment
in which would be totally uniform and transparent to individual software modules with respect to
processor interface, physical processor or processor location used, and other software processes
involved in the system. Such an environment should be realizable through a combination of the
right operating system approach and either standard ISAs or standard interface ISA emulators
resident at each processor.

The common thread in all of the above standardization considerations is interface standardization.
Interface standardization (and simplification) is clearly an important (and probably essential) key to
any successful commonality and modularity effort. Interface standards fall into the following

general categories:
0 Software interfaces
o Mechanical packaging & Cooling interfaces
o Backplane and parallel data bus interfaces

o Serial digital interfaces

o Analog signal interfaces
The question of software interfaces has been addressed. The following discussion deals with
commonality and modularity considerations needed for the remaining interfaces.

Mechanical packaging and cooling interface, backplane and parallel data bus interfaces, and serial

digital interfaces have been addressed by the Air Force Pave Pillar and JIAWG efforts for those

standardization attempts. However, these same areas must be revisited for any new commonality

gpd mo%ularity effort with the goal of seeking much needed improvements as previously
iscussed.

The mechanical packaging and cooling interfaces should be designed to allow easy installation and
minimize cooling problems. Cooling is critical to avionics reliability and often a source of
problems in aircraft. The avionics cooling design should be made tolerant of ECS variations and
should have some tolerance to ECS off-normal conditions and minor mechanical installation
variations without near instant destruction of the avionics. The very high price in terms of weight
and engine bleed that must be paid for cooling must be given full consideration in avionics design.

It is also desirable that modules for use in integrated rack applications be made sufficiently
physically rugged to withstand the handling environm.ent when not in the aircraft rack. Typically,
this environment is far more deadly to the life of the avionics than the installed environment.

The current parallel bus and backplane approaches present some serious problem that should be
addressed and corrected as a part of a future commonality and modularity effort. These problems
are as follows:

o Significant amounts of electrical power are

34

required just for communications between modules.

Intensive effort is needed to correct this

situation in order to

(a) reduce overall electrical power use and

(b, ease the the often critical problem of cooling
the electronic modules.

Alternatives such as optical bus interfaces are

available to allow such reductions.
0 Very large numbers of electrical interconnect pins
are required between modules and backplanes.
Because
(@) the large numbers of pins effectively dictate
the module aspect ratios that adversely affect
cooling interfaces,

(b) the large numbers of electrical connections
may adversely affect reliability (especially
in Navy applications), and

(c) pose nearly insurmountable fault isolation
problems, strong emphasis should be directed
toward major reductions in the number of such
pins.

The current serial data bus interface approaches for serial communications are an interface area in
need of further work as a part of a future commonality and modularity effort. The current bus
approaches require large amount of electrical power, require rather large amounts of electronic
parts, and pose continuing obstacles to system communications that often create undesirable
requirements to implement even more buses. Attention should be directed toward development of a
new, lowcr-power, more capable serial communications method. Such development is urgently
needed to allow improved system architectures that could reduce the extent of parallel data buses
from the very large and very power consuming buses now in use. Techniques for lower power
and higher throughput serial communications are clearly possible and have been suggested.

II.LE.3 INTERNATIONAL DEVELOPMENT AND STANDARDIZATION

During the late 1980s, the United States, United Kingdom, France and Germany issued a
memorandum of understanding to cooperatively develop modular avionic system architectures and
avionic standards. This program is called the Allied Standards Avionics Architecture Council
(ASAAC). The U.S. MOU was signed in December 1991. U.S. government leadership is
focussed through the Air Force via Wright Labs, AAAS-1. The lead US company is Boeing. The
goal is to achieve global industry involvement, with each country providing government
participation and leadership with their respective industries to develop modular avionics.
Basically, ASAAC is adopting and rewriting the JIAWG standards as a starting point. Each
standard is reviewed as appropriate to reflect U.S. restrictions and regulations and potential

application across multiple platforms. Figure 7. provides an overview of the Air Force
standardization initiatives.

35

TN,

Naval Interest in Air Force Standardization

Air Force Standardization Programs

Naval

A:'Y:?aft

Programs JIAWG JIAD MAGA | ASAAC
F-14, F-18 X4

F-18 EF X¢ ¢ X4
AX X4 IX¢ IX¢

Figure 7. Overview of Airforce Standardization Effo:t

QOther countries such as Belgium, the Netherlands, Norway and Denmark are proceeding with their
own modular avionic program under the Mid-Life Update (MLU) Program for the F-16 avionic
system modernization effort. Called the European Participating Countries (EPCs), these countries
chose not to participate in ASAAC effort even though they share common roots in adapting
JIAWG standards. The EPC countries plan to insert modular avionics with the cooperation of the
Air Force using the Modular Mission Computer (MMC). The MMC is based on JIAWG standards
and replaces and combines the functions of older conventional processing units on the F-16 A/Bs.
The MLU/MMC Programs develop actual flyable hardware for fleet aircraft, whereas ASAAC
develops only standards with some demonstration to be performed. ASAAC is a standards
program similar to JJAWG with the focus on next generation fighters (the MRF for the U.S.),
whereas the MLU/MMC programs are targeted toward fulfilling F-16 specific requirements.

ASAAC Relationship with the Navy:

The ASAAC Program has generated a series of standards called STANAGS (Standard Avionic
Guide Specifications). The CAB HI JIAWG standards are the basis for the STANAGS. Each
country is committing $25M towards development and demonstration of these standards with the
opportunity to achieve commonality across four major countries. The ASAAC Program relies
heavily on industry involvement in each country. ASAAC provides a means to develop a common
NATO standards for aircraft avionic architectures. Each country's industries provide, formulate,
and define their own modules based on the STANAGS. The Rafale, EFA and MRF are the target
aircraft of interest.

The relationship of ASAAC to the Zuropean Community is unknown as is the relationship with
NATO. These relationships are yet to be defined.

CNI Commonality Between NATO and European Participating Countries:
An opportunity exists for the Navy to influence interface standards early in the development
process for new European aircraft programs. There is a unique opportunity for compatibility

between traditional NATO Allies and the U.S. Services. NAVAIR has the opportunity to develop
communication, navigation, and identification standards compatible with future European aircraft.

36

Lt i

ikl (e o i IR e S L o T e I Lyl

I LA A i Gl o Ut L G L ST Tt
‘ _ -(° - - - -
o, -

iR TR L1 i A

L S

LA A A L

ik Ui

" T Gl N i b o LS Uk i e s o SR L)
i

The Navy has a unique opportunity to increase European commonality with minimum investment,
through direct ASAAC involvement and monitoring the EPC MLU Programs. This is of specific
interest in light of the Desert Storm operations where cooperation between Allied forces was
essential.

MREF and AX Relationships:

The Air Force has indicated that the Multi-Role F¥ ¢ (MRF) weapon system (an F-16
replacement) will be the ASAAC aircraft of study for . .S. Air Force standardization efforts.
The Navy could offer the AX avionic system for stud luence ASAAC standards, especially

in the area of CNI systems, which shares common pr-.cessing systems and sensor avionics.
Relationships with Standardization Efforts: JIAD, JL\WG, and MASA:

Development of the modular avionic systems should not be limited to new aircraft starts, such as
the AX or F-22. Avionic prime contractors are seeking support and maintenance benefits for
existing aircraft. Using new modular technologies will improve reliability and performance for any
tactical fighter. New technologies can be applied to second generation avionic architectures, such
as those found on the F-14, F-15, F-16, F-18, and A-10. The Modular Avionics System
Architecture (MASA) Program and the Joint Integrated Avionics Directorate, headed by the Air
Force (ASD-XREF) are seeking to apply new modular technologies and avionic system architectures
to retrofit systems. The Navy was involved directly with JIAWG, the Navy has a unique
opportunity to seek involvement in JIAD and MASA using the AX and F-18 systems for study.

Retrofit and New Start Aircraft Direction:

The MASA Program is targeted for applying modules to retrofit aircraft, and the JIAD Program is
targeted for applying modules to new-start (MRF) aircraft. Both programs have the objective to
examine the use of common modular avionics on retrofit platforms other new start aircraft other
than the F-22 and LH platforms. The Navy is monitoring the MASA Program, but direct
involvement in demonstration planning and funding could leverage years of Air Force and industry
expenditures. The MASA Program offers the Navy an open forum to industry which is essential
for retrofitting existing avionic platforms. The F-18 could be offered as a platform to the MASA
Program for study demonstration and analysis. The AX program could be offered to leverage
modular avionic planning on the JIAD initiative. Direct involvement in both Air Force programs
would save years of architecture development expenditures provide a forum to industry, and
provide avenues to initiate industry studies targeted specifically for naval aviation. Figure 7.
indicates which standardization efforts by the Air Force which would interest new naval aviation
programs

Modularizaton Across Aircraft:

Insertion of modular avionics across different aircraft requires standardization programs similar to
JIAWG. Using common modules between weapon system platforms and their corresponding test
equipment is desirable to save carrier space and support manpower reduction. Modularization
commonality between "like" components on the same aircraft is an achievable goal if strict
standards are imposed early in the design process. By aligning NGCR and MASA Programs and
by aligning AX and MRF avionic development financing, significant demonstration and advanced
avionic standardization can be leveraged across multiple platforms. The benefits would be lower
cost avionic systems which are tailored to the target platform.

37

B T E A A T T A R L A AT NI A L Y T R L S A R

II. CHARACTERIZATION OF THE SOLUTION
AMORTIZED DEVELOPMENT AND IMPLEMENTATION COSTS

Many benefits are assumed to flow from software and hardware architecture standardization.
Unfortunately, these benefits will not occur unless the impact of standardization is, in fact, in
concert with the intent of standardization. From previous procurements in military avionics,
examples exist where well-intentioned standardization did not automatically produce the required
logistics or operational enhancements. In such instances, there was technical merit to the
implementation but the result did not meet expectation. When these standardization efforts were
asserted, they added delays and costs to the programs in which they were mandated. As a
consequence, procurement experience clearly indicates proposed architectural standards should be
constantly evaluated with respect to their initial objectives as they are implemented. Experience
shows implementations based on technical merit alone can be very misleading.

Navy intent is to use standardization to "open up" the software and hardware architectures at the
heart of emerging weapons programs such as the A-X, the MRF, and major retrofits to F-14 and
F-18 avionics. If properly executed, such initiatives have the potential for harnessing the same
kinds of forces which have led to the phenomenal changes in the commercial "open systems"
arena. This explosion of commercial computer technology has produced rapidly improving
capability while relentlessly reducing costs. Harnessing these forces for military avionics is
certainly desirable. However, it should be noted that commercial and military environments are
very different. The commercial arena tends to standardize around de facto approaches rather than
the evolving technologies being developed for military applications. The commercial arena also has
mechanisms in place to cope with approaches whose lifespans are decidedly shorter than the
product lifespans in military environments.

NAVAIR is at a critical juncture with respect to avionics standardization. In one direction is the
standardization initiative orchestrated by JIAWG. In another direction is the standardization being
mandated by the NGCR program for future avionics applications. In yet another direction is the
constant procurement activity associated with the A-X, NATF, F-18 E/F, F-14 Advanced AYK-
14, MRF, and other such programs (each of which is in a different lifecycle phase). Each of these
procurement activities is impacted by an avionics standardization initiative. The magnitude of the
impact will depend upon the nature of the avionics standard and its point of adoption within the
respective program lifecycles. The critical issue for NAVAIR will be its constant assessment of its
return on investment as each program develops and incorporates an appropriate level of avionics
standardization. While technical considerations may favor one standard over another, there is no
investment merit to an architectural standard which does not have a favorable impact on lifecycle
Costs.

There are special considerations for the military environment. Among these are

1) the system must perform its mission,
2) military systems must be ruggedized for reliability
in the field environment,

3) system lifespan typically extends to decades, and
4) the volatile nature of national priorities and
threat scenarios can quickly invalidate
assumptions that drive standards choices.
In stark contrast to these issues is the fact that technical standards tend to age to obsolescence very
rapidly. Observation of the commercial computer "chip" market exemplifies this rapid "aging"
phenomena.

If cost were the only consideration, then, the obvious standardization approach for the NGCR

program would be to adopt the best currently available standards and mandate their use in all new
procurement and retrofit initiatives. In today's environment this would clearly indicate selection of

38

commercially-oriented processors and networking components. Clearly, such a move could be
considered absurd by program managers whose primary concern is whether these mandated
components can satisfy specific mission requirements and survive in an avionics environment.
From the standpoint of program management, cost alone is not the overriding criteria for standards
selection. Performance and survivability are!

The high risk climate of military procurement makes it imperative for the Navy to develop a
consistent methodology that can be used to evaluate standardization efforts. An effective
methodology should accommodate both a complexity of factors and a volatility in
procurement/operational assumptions. Such a methodology could be developed by blending
operational performance modelling with technically-constrained econometric modelling.
Operational performance modelling provides a means by which the technical robustness of
standards can be analyzed. Econometric modelling provides a means by which the robustness of
the economic assumptions underlying a standard can be analyzed.

Adoption of specific architectural standards must be compatible with mission operation
performance objectives. Furthermore, this condition must be satisfied in each avionic application.
The role of an operational performance model is to serve as the vehicle for exploring the impact of
uncertainties associated with each technology factor. The technical factors which should be
evaluated are those that have a potential to force architectural change and affect architectural
flexibility in the future. Examples of the former are 1) industrial base technology shifts; 2)
operational requirements changes; and 3) supplier base volatility.

Econometric modelling is an effective tool for evaluating lifecycle costs in military programs. This
is especially true because of the volatility of assumptions and rigidity of constraints so peculiar to
the military environment. Howzver, this type of modelling must be extended to incorporate a
technical constraint relating to the mission capability requirement. Suitably extended, econometric
modelling provides a vehicle for exploring the impacts on lifecycle costs of the economic attributes
of standards choices in the context of program uncertainties. Among these factors are the
following:

1) exchanging development costs for logistics costs,

2) uncertainties and delays in procurements,

3) uncertainties and changes in deployment and support

scenarios, and
4) technical obsolescence.

A technique which can be used to link the technical aspects with economics aspects is to adapt
Taguchi's "signal-to-noise" concept from his experimental design method. Applying this method to
econometric modelling involves establishing a composite measure of the mission "goodness" and
operational readiness for each standards approach. Econometric results then provide comparative
lifecycle costs in relation to te hnical goodness of the fielded systems.

There are cost impacts associated with the imposition of standards that must be estimated and bormne
by the affected procurement programs. The degree to which the procuring agency (program)
absorbs those costs is a function of

1) the nature of the standard,

2) the scope of its adoption (number of applications/installations), and

3) the potential lifespan of the standard.
Although these dependencies are obvious, evaluation of standards costs rests on many potentially
volatile assumptions (e.g., to which procurements it will apply; to what extent it will apply; what
changes host systems will undergo during their lifecycle; etc.). Two classes of costs are associated
with standards. First, the government must invest in the development, or definition, of the
standard. Secondly, vendors seeking to become component suppliers must invest substantially to
produce implementations of the standards. The direct cost to the government for standards

39

development will vary in relation to the applicability of the standard outside of military
procurement. If the standard has no value outside of military applications, then the government
will, in effect, provide the entire investment, with the vendor portion appearing later in component
procurements.

The key to successful standards selection is to demonstrate their merit in quantifiable terms that are
truly significant to the Navy. This can only be the case when the standards objective is to promote
commonality, interchangeability and interoperability so as to

1) maximize the number of programs and installations
over which costs can be amortized,

2) maximize the degree to which these programs can
absorb evolutionary change,

3) maximize the attraction for suppliers in the form
of ease of competing, length of production runs,
etc.

Comparative analysis of competing architectural standards is certainly not a trivial exercise. The
suggested modelling approach, however, is both feasible and capable of yielding meaningful
results. Perhaps just as importantly, the modelling approach tends to force early and precise
attention to those issues which focus standards on their intended objective. Without such a
methodology there is a strong tendency to focus standards selection on technical features to the
exclusion of equally important lifecycie cost issues. The value of an architectural standards
approach ought to be predictable and demonstrable in practice.

40

APPENDIX
LIST OF REFERENCES

1. C. N. Bain, "Aircraft Readiness Enhancement Technology" -
National Defense-, pp. 42-44, Sept. 1982.

2 L. R. Webster & J. M. Madar of Harris Corporation -1986
Proceedings- IEEE Annual R&M Symposium, p. 305.

41

